yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Random numbers for experimental probability | Probability | AP Statistics | Khan Academy


4m read
·Nov 11, 2024

Pascale Rickets has invented a game called Three Rolls to Ten. You roll a fair six-sided die three times. If the sum of the rolls is 10 or greater, you win. If it is less than ten, you lose. What is the probability of winning Three Rolls to Ten?

So, there are several ways that you can approach this. The way we're going to tackle it in this video is we're going to try to come up with an experimental probability. We're going to do many experiments trying to win Three Rolls to Ten and figure out the proportion that we actually win. The more experiments we try, the better; the more likely that we're going to get a good approximation of the actual probability.

So let's do that! To help us, I'm going to have a computer generate a string of random digits from 0 to 9. The way that we're going to use this is: Remember we're rolling a fair six-sided die, so the outcome could be 1, 2, 3, 4, 5, or 6 for each roll. In this random number list that the computer has generated, I do get digits from 1 to 6, but I also get the digits 7, 8, 9 and 0.

What I'm going to do for each experiment: I'm going to start at the top left and I'm going to consider each digit a roll. If it gives me an invalid result for a six-sided die—so if it's a 0, 7, 8, or 9—I will just ignore that. I will just say, "Well that wasn't a valid roll." It's like you roll the die and it fell off the table or something like that.

So let's do that! Let's do multiple experiments of taking three rolls, summing them up, and we'll see how many we can do to figure out an experimental probability of winning Pascal's game.

So let me set up a little table here. I want space to show the sum; this is going to be the experiment. So let me write the sum, and over here we're going to say, "Did we win?"

All right, so let's start with experiment one. Our first roll, we got a one. Our second roll, we got a five. We're doing quite well! Our third roll, we got a six. Did we win? Well, one plus five plus six is twelve—yes, we won!

Let's do another experiment; this is going to be experiment two. We can just keep going here; these are random digits. We have a six in our first roll, we got a two in our second roll, we got a four in our third roll. Did we win? Yes, once again! This sums up to twelve, so we won!

All right, let's do another experiment. So experiment number three: the first thing is invalid. This is our first roll; we got a six, and then this is invalid. Our second roll, we get a three. This is invalid, that is invalid, and then in our third roll, we got a two. So we squeaked by; this adds up to eleven—yes, that looks like a win!

All right, let's do our fourth experiment here. Our first roll, we got a one—this is invalid. The second roll, we got a two—this is invalid. The third roll, we get a five. Did we win? One plus two plus five is eight—no, we did not win. So that's our first non-win.

So let's keep going; this is interesting! All right, this is invalid, so we're going to have—this is trial five. We are going to have 4 plus 3 plus 1. Four plus three plus one adds up to eight. Did we win? No!

Let's just keep going here. I'm going to keep going with my table where I have experiment, I'll do five more trials: x-bar, sum, and do we win? Let me make the table; this is just a continuation of the table we had before. I don't want to go below the page because I want to be able to look at our random numbers here.

So we are on to experiment six. Experiment six: we are getting a three in the first roll, a three in the second roll—this isn't looking good—and then a two in our third roll. Did we win? No, this is less than ten.

Now we go to experiment seven. Experiment seven: we get a two in our first roll, this is invalid. We get a three in our second roll plus three, and we get a one in our third roll. So plus one; once again, we did not win.

Now we go to experiment eight. We get a one in our first roll, we get a three in our second roll—this is invalid, the die fell off the table; we can think of it that way—and then in our third roll, we get a five. Plus five. Did we win? No, this adds up to nine.

So we had a string of wins to begin with, but now we're getting a string of non-wins. All right, now let's go to experiment nine. So we get a six in our first roll, we get a four in our second roll, and then these are all invalid, and then we get a five in our third roll. Did we win here? Yes, we won! Over here, this is definitely going to be greater than ten; this is fifteen.

All right, last experiment—or at least for this video. Last experiment. You could keep going; in fact, I encourage you to after this to see if you can get a more accurate, a better approximation of the theoretical probability of winning by doing more experiments to calculate an experimental probability.

So here, your experiment 10: first roll, we get a five; second roll, we get a two—this is invalid, invalid, invalid—then we get a six. Here we definitely won!

So with 10 trials, based on 10 experiments, what is our experimental probability of winning this game? Well, out of the 10 experiments, how many did we win? It looks like we won 1, 2, 3, 4, 5.

So based on just these 10 experiments, we've got a pretty clean 50%! So do you think the theoretical probability is actually 50%? Maybe you'd want to continue running these experiments over and over. Maybe we'd want to do a computer program that could run this experiment set of 10 times, maybe 10,000 times, to see if we can get closer to the true theoretical probability.

More Articles

View All
Comparing constants of proportionality | 7th grade | Khan Academy
Betty’s Bakery calculates the total price d in dollars for c cupcakes using the equation d is equal to two times c. What does two mean in this situation? So pause this video and see if you can answer that. All right, before I even look at the choices, le…
15 Daily Habits to Boost Your Intelligence
Everybody wants to be more intelligent, right? There’s no denying that. So where do people get stuck? Some may try to debate this, but here are the facts: Although genetics do play a part in cognitive development, or intelligence as most of us call it, fo…
The elements of a poem | Reading | Khan Academy
Hello readers! Let’s talk about poems. Poetry is a special kind of writing. If ordinary writing is like talking, then poetry is like singing. Poetry is a way of making art with language. Poems can express huge ideas or feelings. They can be about the soun…
3d vector field example | Multivariable calculus | Khan Academy
So in the last video, I talked about three-dimensional vector fields, and I finished things off with this sort of identity function example where at an input point (X, Y, Z), the output vector is also (X, Y, Z). Here, I want to go through a slightly more …
Phil Libin at Startup School 2013
Wow, good morning! Uh, I think this is literally the largest number of people I’ve ever spoken to. Pretty sure it is. Uh, very cool, very impressive. Thank you for coming. Um and to everyone, uh I’m super excited to talk to you. You know, Paul asked me t…
15 Dumb Ways to Spend Your Money
Alex, do you ever find yourself, like halfway through the month, and wonder where your paycheck went? Well, you’re not alone. Okay, we all have those moments where we splurge a little bit too freely, sometimes in ways that might make us cringe later on. L…