yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Elemental building blocks of biological molecules | Chemistry of life | AP Biology | Khan Academy


3m read
·Nov 11, 2024

What we have here is just a small sample of the types of molecules that you will see in a biological system. At the top left, right over here, you have an example of an amino acid. Amino acids are the building blocks of proteins. If we were to take a look at what an amino acid is made up of, in this dark gray color, those are carbon atoms. In the white, you see hydrogen atoms. In the red, you see oxygen atoms, and this blue right over here, that is a nitrogen atom.

As you can see, a lot of these elements keep showing up in these various molecules, especially carbon and hydrogen; but also, you see a lot of oxygen and nitrogen. As we're about to see, phosphorus also pops up a lot. Now, this isn't a comprehensive list. You'll also see other elements, but these tend to show up fairly frequently.

For example, this is a model of ATP, adenosine triphosphate. As we study biology, you'll see that it's often viewed as the currency of energy, the molecular currency of energy in biological systems. Once again, we see a lot of carbons in the dark gray. We see the hydrogens in this off-white color, or the light gray, I guess you could say. You see your oxygens again here; the nitrogen is in this light blue color. Then you see the phosphoruses right over there in that yellow color.

This is a model of a triglyceride, often known as a fat molecule. Fat molecules are used for energy storage, and once again, you see many carbons in the dark gray. Then you see these hydrogens and then a few oxygens. This is a model of DNA, a small segment of DNA, and this is a much more complex molecule than the other ones we've seen. In fact, this could extend far beyond our screen in either direction. But once again, you see these same familiar elements. You see the carbon in the dark gray, the hydrogen in that white color, you see the oxygens in the red, the nitrogens in the blue, and the phosphorus in the yellow.

So the big takeaway here is that biological molecules tend to be made up of the same set of elemental building blocks. In fact, it isn't just at the elemental level; it can even be at the molecular level. For example, in ATP, you have what's known as a nitrogenous base right over here, you have a five-carbon sugar right over here, and you have three phosphate groups or a triphosphate group.

In DNA, you have something very similar; the nitrogenous bases are hard to see. They are kind of the rungs of the ladder here. You have your five-carbon sugars, also hard to see, and then you have these phosphates as well. In fact, the backbone of DNA is made up of these five-carbon sugars and these phosphates.

Now, why do these elements keep showing up? Well, these are elements that you will see a lot on Earth. For example, nitrogen makes up most of our atmosphere. We have a lot of water on the surface of our planet, which is made up of oxygen and hydrogen. Carbon actually makes up a surprisingly small percentage of our atmosphere, about 0.04% of our atmosphere. But photosynthetic organisms, like plants, are good at fixing carbon and storing energy in carbon bonds.

When we eat those, those become part of our bodies. Just to get an appreciation of what we are made up of in terms of elements, we can look at this chart right over here, where we see that we are primarily made up of oxygen, which is a high percentage in the body. That's because we're primarily made up of water, and water is primarily oxygen. It also has hydrogen.

Now, second to oxygen is carbon, and then you see nitrogen, phosphorus. We, of course, have a lot of calcium. Calcium, of course, is used in bones, but it's also used for things like muscle contractions. I could keep on going down this list, and you will see these other elements in your study of biology.

But the big picture is that even though biological systems can get fairly complex, they're made up of similar building blocks, and these elemental building blocks come from the environment in which these biological systems exist and evolved.

More Articles

View All
Mirror equation example problems | Geometric optics | Physics | Khan Academy
Mere equation problems can be intimidating when you first deal with them, and that’s not because the mere equation is all that difficult. It’s kind of easy; it’s just a few fractions added together. The place where it gets tricky is deciding whether these…
The mole and Avogadro's number | Atomic structure and properties | AP Chemistry | Khan Academy
In a previous video, we introduced ourselves to the idea of average atomic mass, which we began to realize could be a very useful way of thinking about mass at an atomic level or at a molecular level. But what we’re going to do in this video is connect it…
How to Set Goals: My goals for 2018 ($1 Million in income)
So guys, if you want to achieve something, it’s not just gonna randomly happen to you. It’s not just gonna fall from the sky onto your lap and like, “Oh, whoops, there it is!” That’s not gonna happen. In order to get something, you really have to want wha…
The derivative & tangent line equations | Derivatives introduction | AP Calculus AB | Khan Academy
We’re told that the tangent line to the graph of function at the point (2, 3) passes through the point (7, 6). Find f prime of 2. So whenever you see something like this, it doesn’t hurt to try to visualize it. You might want to draw it out or just visua…
Taoist Wisdom For Inner Peace
Taoism is an ancient Chinese mystical, philosophical, and religious tradition that emphasizes living in agreement with the Tao. The main work in Taoism is the Tao Te Ching, created by a mysterious author called Lao Tzu, which contains profound wisdom and …
Identifying transformation described with other algebra and geometry concepts
We’re told that a certain mapping in the x-y plane has the following two properties: each point on the line ( y = 3x - 2 ) maps to itself. Any point ( P ) not on the line maps to a new point ( P’ ) in such a way that the perpendicular bisector of the segm…