yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB/BC 3cd | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Bob is writing his bicycle along the same path for ( 0 \leq t \leq 10 ). Bob's velocity is modeled by ( b(t) = t^3 - 6t^2 + 300 ) where ( t ) is measured in minutes and ( b(t) ) is measured in meters per minute. Find Bob's acceleration at time ( t = 5 ).

Well, acceleration—this is a velocity function right over here—so the acceleration is going to be the derivative of the velocity function with respect to time. How? What is the rate of change of velocity with respect to time? That's acceleration.

So we really just want to evaluate Bob's acceleration at ( t = 5 ). That's going to be ( b'(5) ). So let's first figure out what ( b'(t) ) is. ( b'(t) ) is equal to—we'll take the derivative here. It's pretty straightforward; just use the power rule. So it's going to be ( 3t^2 - 12t ) (2 times negative 6 is negative 12), and then the derivative of 300 is 0 since it doesn't change with respect to time.

And so ( b'(5) ) is going to be equal to ( 3 \times 5^2 - 12 \times 5 ), which is equal to ( 75 - 60 ). This is equal to ( 15 ).

And the units here—this is acceleration, so this is going to be his velocity was in meters per minute, and so this is going to be meters per minute per minute. Because remember, time is in terms of minutes. So we could write it out as meters per minute per minute, which is the same thing as meters per minute squared.

All right, let's do the next part. Based on the model ( b ) from part C, find Bob's average velocity during the interval from ( 0 \leq t \leq 10 ).

And if the notion of average velocity or average value of a function is completely foreign to you, I encourage you to watch the videos on Khan Academy on finding the average of a function. But straight to the chase, the average velocity—the average velocity is going to be the area under the velocity curve divided by our change in time.

So the area under the velocity curve from ( t = 0 ) to ( t = 10 ) of ( b(t) ) ( b(t) , dt ) divided by our change in time. So it's going to be divided by—well, you're going from 0 to 10; so ( 10 - 0 = 10 ).

And if you wanted the intuition here, it's like—well, if you know the area of something, and if you wanted to find its average height, you could just divide by its width. And that's what we're doing here. If we know the area of something, we want to figure out its average height, and so you divide by its width. That's, I guess, a very high-level intuition for where this expression came from.

And so this is going to be equal to ( \frac{1}{10} ) times the integral from ( 0 ) to ( 10 ) of ( b(t) = t^3 - 6t^2 + 300 , dt ).

And so this is going to be equal to ( \frac{1}{10} ). Take the antiderivative here; so this is going to be ( \frac{t^4}{4} - 2t^3 + 300t ).

I'm going to evaluate it at 10 and subtract from that the evaluation at 0. And so this is going to be equal to—this is going to be equal to ( \frac{1}{10} )—that same ( \frac{1}{10} ) there.

When you evaluate all of this at 10, what are we going to get? Let’s see. ( 10^4 = 10000 ), divided by 4 is ( 2500 ). Then minus ( 2 \times 10^3 ) (which is ( 2000 )), and then ( 300 \times 10 )—well, that’s plus ( 3000 )—and then you subtract all of this evaluated at zero, which is just going to be zero.

So this is going to be equal to ( 2500 - 2000 = 500 + 3000 ). This all simplifies to ( 3500 ) or ( 3,500 ).

Then you divide by ( 10 ); this is going to be ( 350 ).

This is an average velocity ( 350 ) meters per minute, and we are done.

More Articles

View All
10 Misleading Money Facts
Everyone loves some good money advice, right? But most of it is either misleading, vague, or not correlated to the real world. So, here’s our picks of the most misleading money advice out there. Welcome to a Lux! First up, “investing will make you rich.”…
2015 AP Calculus AP 2b | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Part 2b: Region S is the base of a solid whose cross sections perpendicular to the x-axis are squares. Find the volume of the solid. All right, so region S we see it right over here. In the last part, we already said that this function is f and this func…
How does a whip break the sound barrier? (Slow Motion Shockwave formation) - Smarter Every Day 207
(Whooshing) (Smacking) - What’s up, I’m Destin, this is Smarter Every Day. This is the tip of a bull whip and that crack you hear is this breaking the sound barrier. My question is why or how? Like, if you think about it, your arm’s never leaving your bod…
The Warning Of Hyper Inflation | DO THIS NOW
So, as most of you know, I usually intro my videos with “What’s up, you guys? It’s Graham here.” But the only thing up today is inflation, and it’s getting much, much worse than most of us initially expected. Throughout the last week, it was revealed that…
Essential Startup Advice with Adora Chung, Reham Fagiri, Tiffani Ashley Bell, and Alana Branston
All right, hello everyone! My name is Oh Dora. I’m one of the partners at Y Combinator. I have Rehan from App Deco, Alana from Bulletin, and Tiffany from The Human Utility. Today, our discussion will be around essential startup advice. I think there’s a …
AMAZING CD BUBBLE!!! -- Mind Blow 9
[Music] Pea butter, pea juice, and bagel in a glass. Oh, and pothead’s fee sauce. Kevin here, this is Mind Flow. What’s tougher, a Super Nintendo cartridge or Genesis? Well, it turns out you can freeze, drop, and boil both, and they’ll still be playable.…