yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB/BC 3cd | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Bob is writing his bicycle along the same path for ( 0 \leq t \leq 10 ). Bob's velocity is modeled by ( b(t) = t^3 - 6t^2 + 300 ) where ( t ) is measured in minutes and ( b(t) ) is measured in meters per minute. Find Bob's acceleration at time ( t = 5 ).

Well, acceleration—this is a velocity function right over here—so the acceleration is going to be the derivative of the velocity function with respect to time. How? What is the rate of change of velocity with respect to time? That's acceleration.

So we really just want to evaluate Bob's acceleration at ( t = 5 ). That's going to be ( b'(5) ). So let's first figure out what ( b'(t) ) is. ( b'(t) ) is equal to—we'll take the derivative here. It's pretty straightforward; just use the power rule. So it's going to be ( 3t^2 - 12t ) (2 times negative 6 is negative 12), and then the derivative of 300 is 0 since it doesn't change with respect to time.

And so ( b'(5) ) is going to be equal to ( 3 \times 5^2 - 12 \times 5 ), which is equal to ( 75 - 60 ). This is equal to ( 15 ).

And the units here—this is acceleration, so this is going to be his velocity was in meters per minute, and so this is going to be meters per minute per minute. Because remember, time is in terms of minutes. So we could write it out as meters per minute per minute, which is the same thing as meters per minute squared.

All right, let's do the next part. Based on the model ( b ) from part C, find Bob's average velocity during the interval from ( 0 \leq t \leq 10 ).

And if the notion of average velocity or average value of a function is completely foreign to you, I encourage you to watch the videos on Khan Academy on finding the average of a function. But straight to the chase, the average velocity—the average velocity is going to be the area under the velocity curve divided by our change in time.

So the area under the velocity curve from ( t = 0 ) to ( t = 10 ) of ( b(t) ) ( b(t) , dt ) divided by our change in time. So it's going to be divided by—well, you're going from 0 to 10; so ( 10 - 0 = 10 ).

And if you wanted the intuition here, it's like—well, if you know the area of something, and if you wanted to find its average height, you could just divide by its width. And that's what we're doing here. If we know the area of something, we want to figure out its average height, and so you divide by its width. That's, I guess, a very high-level intuition for where this expression came from.

And so this is going to be equal to ( \frac{1}{10} ) times the integral from ( 0 ) to ( 10 ) of ( b(t) = t^3 - 6t^2 + 300 , dt ).

And so this is going to be equal to ( \frac{1}{10} ). Take the antiderivative here; so this is going to be ( \frac{t^4}{4} - 2t^3 + 300t ).

I'm going to evaluate it at 10 and subtract from that the evaluation at 0. And so this is going to be equal to—this is going to be equal to ( \frac{1}{10} )—that same ( \frac{1}{10} ) there.

When you evaluate all of this at 10, what are we going to get? Let’s see. ( 10^4 = 10000 ), divided by 4 is ( 2500 ). Then minus ( 2 \times 10^3 ) (which is ( 2000 )), and then ( 300 \times 10 )—well, that’s plus ( 3000 )—and then you subtract all of this evaluated at zero, which is just going to be zero.

So this is going to be equal to ( 2500 - 2000 = 500 + 3000 ). This all simplifies to ( 3500 ) or ( 3,500 ).

Then you divide by ( 10 ); this is going to be ( 350 ).

This is an average velocity ( 350 ) meters per minute, and we are done.

More Articles

View All
Watch: Fireflies Glowing in Sync to Attract Mates | National Geographic
[Music] The synchronous Firefly ranges throughout the southern Appalachian. It really is a pretty magical thing to see. I think people are just fascinated by fireflies, you know, especially growing up. A lot of people have experiences of catching fireflie…
The ACTUAL Day-In-The-Life of a Real Estate investor: The Good, Bad and Ugly
What’s up you guys? It’s Graham here. So, I’m here with none other than Matt McKeever, and we’ve got Jeff Whybeau in London, Ontario, Canada. I realized it looks like we’re about to drop a really hot mixtape, so we’re gonna call this mixtape “The Day in t…
The Crisis of Credit Visualized - HD
The crisis of credit visualized. What is the credit crisis? It’s a worldwide financial fiasco involving terms you’ve probably heard, like subprime mortgages, collateralized debt obligations, frozen credit markets, and credit default swaps. Who’s affected?…
Introduction to irregular verbs | The parts of speech | Grammar | Khan Academy
Hello, Garans. Today I want to start talking about irregular verbs. That is to say, verbs that are a little weird. You know, we have this idea of a regular verb that we can conjugate in all tenses, and it’s just going to behave in a way that we expect. L…
Using matrices to manipulate data: Game show | Matrices | Precalculus | Khan Academy
We’re told in the beginning of each episode of a certain game show. Each contestant picks a certain door out of three doors. Then the game show host randomly picks one of the two prize bundles. After each round, each contestant receives a prize based on t…
Inside the Real Black Hawk Down | No Man Left Behind
So the overall mission in Somalia was really a relief operation. We were providing security for the relief organizations who were there trying to distribute food to the starving Somali. Aded was the warlord of the day, so he stepped in and started attacki…