yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Complex numbers


4m read
·Nov 11, 2024

This video is going to be a quick review of complex numbers. If you studied complex numbers in the past, this will knock off some of the rust, and it'll help explain why we use complex numbers in electrical engineering.

If complex numbers are new to you, I highly recommend you go look on the Khan Academy videos that Sal's done on complex numbers, and those are in the Algebra 2 section. So let's get started.

The complex numbers are based on the concept of the imaginary j. The number j in electrical engineering, we use the number j instead of i, and j squared is defined to be minus one. So that's the definition of j, and that's referred to as an imaginary number. I don't really like the name imaginary, but that's what we call it. It's a really useful concept in electrical engineering.

So with that definition, we define a complex number, and the usual variable we often use for that is z. A complex number has a real part, we'll call that x, and it has an imaginary part that we're going to call j y. So j is explicit out here; this is the imaginary part of the number, and this is the real part of z.

So based on what this number looks like, this suggests that we can maybe plot this on a two-dimensional plot, and we'll call this the complex plane. The complex plane looks like this: we can plot two parts. We'll have a real part over here on what is usually the x-axis, and we'll have an imaginary part, which is the vertical axis. So this is referred to as the complex plane.

If I have a complex number z, I could represent it on this plane by basically going over x like this, going over a distance x and up a distance y. That will give me an imaginary number, and that's z. So z is a location in this complex space, and that's one representation of a complex number.

The other common way to represent a complex number is by drawing a line from the origin here and going right through z like that. Then we basically have some radius r from the origin to distance out to z, and it's measured by some angle like that, and that angle would be theta. So in the orange is r and theta, and in the blue here, we have x and y, and those are two different ways to represent exactly the same number z.

So over here, I can say z equals r at some angle, this angle symbol of theta. Now I can go over here, and I can work out how do we convert between the two? How do I convert from r to y and x, and how do I go the other way?

One thing I notice is I just use some simple trigonometry. So this distance here, if I know r, say I know r, this distance here x is equal to the cosine of theta times the distance r, r cosine theta. So I can say x equals r cosine of theta.

So if I want to figure out the y distance here, and I know r already, let me just move. Here's the y distance right here; I can say y equals r times the sine of theta. That's this distance here. Okay, so if I know r and theta, this is how I get x and y.

Now let's go the other way. Suppose I know x and y, and I want to know r and theta. So r—this is a right triangle here—there's our right triangle. So I use the Pythagorean theorem.

To convert from x and y to r, I use the Pythagorean theorem: r squared equals x squared plus y squared. And now if I want to find theta, I use another little bit of trigonometry. Tangent is opposite over adjacent. Opposite over adjacent is y over x, so tangent of theta equals y over x.

So if you're going to do this on your calculator, you would say that theta equals the inverse tangent of y over x. So there's two conversions between two different forms of the complex number. We want to be able to use these conversions, and we want to be able to use either of these two representations freely and go back and forth between them.

Now there's a third representation that's also going to be really useful to us. Now what I'm going to do is I'm going to take this x and y expression here, and I'm going to put it back into this way, this rectangular way of writing z.

What that looks like is z equals x, which is r times cosine theta, and y is equal to r. I'll put the r out front here, r sine theta with a j in front of it, so I can write plus j sine theta.

Now if you look closely at this expression right here, we recognize this. We recognize this as one side of Euler's formula. The other side of Euler's formula I can rewrite as z equals r times e to the j theta, and this is called the exponential form of a complex number.

All this means—what does this mean here? What is this thing? This means exactly the same thing as this, and this is one of the two ways we can write complex numbers. So this r e to the j theta, that is z right here; that means a complex number sitting out here at radius r from the origin at angle theta.

That's what you think of when you see e to the j something written down. It's just a representation of a complex number, and this form is going to be particularly useful because, if you remember when we were solving all those differential equations, we always liked exponential solutions.

So I want to put some squares around these guys; these are the three ways that we can represent a complex number, and they're all equivalent. I'll go over here just as a reminder note—I'll write down Euler's formula; that's where that comes from.

Let me write that down over here: Euler's formula is e to the j theta equals cosine theta plus j sine theta. The other form has a negative exponent: e to the minus j theta equals cosine theta minus j sine theta.

So that's Euler's formula, and Sal has videos on how to derive this equation, and you would search on this term here in Khan Academy.

More Articles

View All
Darwinism vs. Social Darwinism part 1 | US History | Khan Academy
Hey, this is Kim from KH Academy. I am the history fellow here, and I am here with Emily. Hi, I’m the biology fellow. So, Emily and I are here talking about Darwinism, and I’m interested in Darwinism because in the late 19th century, we usually call the …
An Accidental Case of the Blues | Podcast | Overheard at National Geographic
So this is my first time back getting office in March, April, May, June, July, August—six months. Six months—like a lot of other places in the U.S. in the summer of 2020, our office was closed to help slow the spread of coronavirus. But in August, my prod…
The Moon Terminator Illusion
Hey, Vsauce. Michael here. This is called the dolly zoom effect, and the optics that make it possible are also responsible for what’s called the moon terminator illusion. A terminator is the line between an illuminated and dark side. Light arrives perpend…
We Got Us a Goat | The Boonies
[Music] You’re a little bigger. I put a saddle on you, make this trip a lot easier. In Onion Creek, Washington, DOC Leverett has successfully bartered for a lamancha bear goat, the kind of renewable food source he needs to sustain his life above the grid…
I Make Boring Videos
Before diving into this video, I have a question: do I have your undivided attention? If you’re working or playing a game, I highly suggest you pause everything for the next 10 to 15 minutes and only listen to my words. You don’t have to, of course, but I…
"EMPATHY" - другой взгляд на теннис
Hello, dear friends! Today I would like to make a video illustration of the word “empathy.” This word has a literal translation as compassion, sympathy. But in fact, the most important translation of this word is to understand the situation from the other…