yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Approximation with local linearity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We're told the function ( f ) is twice differentiable with ( f(2) = 1 ), ( f'(2) = 4 ), and ( f''(2) = 3 ). What is the value of the approximation of ( f(1.9) ) using the line tangent to the graph of ( f ) at ( x = 2 )? So pause this video and see if you can figure this out. This is an actual question from a past AP calculus exam.

All right, now let's do this together. If I was actually doing this on the exam, I would just cut to the chase and I would figure out the equation of the tangent line at ( x = 2 ) going through the point ( (2, 1) ), and then I would figure out, okay, when ( x = 1.9 ), what is the value of ( y )? That would be my approximation. But for the sake of learning and getting the intuition here, let's just make sure we understand what's happening.

So let me graph this. Let's say that's my ( y )-axis, and then this is my ( x )-axis. This is ( x = 1 ), this is ( x = 2 ), this is ( y = 1 ). We know that the point ( (2, 1) ) is on the graph of ( y = f(x) ), so we know that point right over there is there. And we also know the slope of the tangent line. The slope of the tangent line is ( 4 ). So it's going to look something like this; it's going to probably even be a little steeper than that.

The slope of the tangent line is going to look something like that. We don't know much more about it; we know the second derivative here. But what they're asking us to do is, without knowing what the function actually looks like, the function might look something like this. Let me just draw something. So the function might look something like this.

We're trying to figure out what ( f(1.9) ) is, so if ( x = 1.9 ), ( f(1.9) ) — if that's the way the function actually looked — might be this value right over here. But we don't know for sure because we don't know much more about the function. What they're suggesting for us to do is use this tangent line.

If we know the equation of this tangent line here, we can say, well, what does that tangent line equal when ( x = 1.9 )? When ( x = 1.9 ), it equals that point right over there, and then we could use that as our approximation for ( f(1.9) ).

Well, to do that, we know we need to know the equation of the tangent line, and we could do that in point-slope form. We would just have to say ( y - ) the ( y ) value that we know is on that line. The point ( (2, 1) ) we know is on that line, so ( y - 1 ) is going to be equal to the slope of our tangent line, which we know is going to be equal to ( 4 ) times ( x - ) the ( x ) value that corresponds to that ( y ) value, so ( x - 2 ).

So now we just have to substitute ( x = 1.9 ) to get our approximation for ( f(1.9) ). So we'd say ( y - 1 = 4(1.9 - 2) ). ( 1.9 - 2 ) is ( -0.1 ), and let's see, ( 4 \times -0.1 ) — this all simplifies to ( -0.4 ).

Now you add ( 1 ) to both sides; you get ( y = 1 - 0.4 ). If you add ( 1 ) here, you're gonna get ( 0.6 ). So this — I didn't draw it quite to scale — ( 0.6 ) might be something closer to right around there, but there you go. That is our approximation for ( f(1.9) ), which is choice ( b ), and we're done.

One interesting thing to note is we didn't have to use all the information they gave us. We did not have to use this information about the second derivative in order to solve the problem. So if you ever find yourself in that situation, don't doubt yourself too much because they will sometimes give you unneeded information.

More Articles

View All
Sales pre-PMF should be done by the founders.
If you’re the founder of an early stage startup and you’re building a product that you’re hoping other businesses will buy, you are capable of selling it. That’s the good news. The bad news is that you’re probably the only person capable of selling your p…
Formation of biomolecules | High school biology | Khan Academy
[Sal] So all organisms need food to survive. Now, for some of you, this might be pretty obvious. You realize what might happen to your body if you don’t get food. You might realize that you need that food for both energy and you need that to actually buil…
Neil and Larry on Pluto and Dinos | StarTalk
What is the deal with Pluto right now? Is it a planet or not? Get over it. It’s not. No, it’s not. But why is there so much haterade at Pluto? Why can’t it be a planet anymore? So do you know that our moon is five times the mass of Pluto? So you’re hati…
.38 Special vs Prince Ruperts Drop at 170,000 FPS - Smarter Every Day 169
Hey, it’s me, Destin. Welcome back to Smarter Every Day. In one of the previous episodes, we shot a .22 caliber bullet against various Prince Rupert’s Drops, and you saw it splatter against the glass. It was fascinating. Now, a lot of people had comments…
Why You'll Regret Buying Stocks In 2023
What’s up, Graham? It’s guys here, and 2023 is already off to an interesting start. For example, a Florida woman was recently pulled from a storm drain for the third time in two years. The National Guard general was fired for ordering troops to take his m…
Making inferences in informational texts | Reading | Khan Academy
[Music] From the moment she strolled into my office, I could tell she was gonna be a difficult sentence to read. You could tell from the way she walked that she was carrying a lot of information, but getting it out of her wouldn’t be easy. I was gonna nee…