yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Approximation with local linearity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We're told the function ( f ) is twice differentiable with ( f(2) = 1 ), ( f'(2) = 4 ), and ( f''(2) = 3 ). What is the value of the approximation of ( f(1.9) ) using the line tangent to the graph of ( f ) at ( x = 2 )? So pause this video and see if you can figure this out. This is an actual question from a past AP calculus exam.

All right, now let's do this together. If I was actually doing this on the exam, I would just cut to the chase and I would figure out the equation of the tangent line at ( x = 2 ) going through the point ( (2, 1) ), and then I would figure out, okay, when ( x = 1.9 ), what is the value of ( y )? That would be my approximation. But for the sake of learning and getting the intuition here, let's just make sure we understand what's happening.

So let me graph this. Let's say that's my ( y )-axis, and then this is my ( x )-axis. This is ( x = 1 ), this is ( x = 2 ), this is ( y = 1 ). We know that the point ( (2, 1) ) is on the graph of ( y = f(x) ), so we know that point right over there is there. And we also know the slope of the tangent line. The slope of the tangent line is ( 4 ). So it's going to look something like this; it's going to probably even be a little steeper than that.

The slope of the tangent line is going to look something like that. We don't know much more about it; we know the second derivative here. But what they're asking us to do is, without knowing what the function actually looks like, the function might look something like this. Let me just draw something. So the function might look something like this.

We're trying to figure out what ( f(1.9) ) is, so if ( x = 1.9 ), ( f(1.9) ) — if that's the way the function actually looked — might be this value right over here. But we don't know for sure because we don't know much more about the function. What they're suggesting for us to do is use this tangent line.

If we know the equation of this tangent line here, we can say, well, what does that tangent line equal when ( x = 1.9 )? When ( x = 1.9 ), it equals that point right over there, and then we could use that as our approximation for ( f(1.9) ).

Well, to do that, we know we need to know the equation of the tangent line, and we could do that in point-slope form. We would just have to say ( y - ) the ( y ) value that we know is on that line. The point ( (2, 1) ) we know is on that line, so ( y - 1 ) is going to be equal to the slope of our tangent line, which we know is going to be equal to ( 4 ) times ( x - ) the ( x ) value that corresponds to that ( y ) value, so ( x - 2 ).

So now we just have to substitute ( x = 1.9 ) to get our approximation for ( f(1.9) ). So we'd say ( y - 1 = 4(1.9 - 2) ). ( 1.9 - 2 ) is ( -0.1 ), and let's see, ( 4 \times -0.1 ) — this all simplifies to ( -0.4 ).

Now you add ( 1 ) to both sides; you get ( y = 1 - 0.4 ). If you add ( 1 ) here, you're gonna get ( 0.6 ). So this — I didn't draw it quite to scale — ( 0.6 ) might be something closer to right around there, but there you go. That is our approximation for ( f(1.9) ), which is choice ( b ), and we're done.

One interesting thing to note is we didn't have to use all the information they gave us. We did not have to use this information about the second derivative in order to solve the problem. So if you ever find yourself in that situation, don't doubt yourself too much because they will sometimes give you unneeded information.

More Articles

View All
How to Learn Faster with the Feynman Technique (Example Included)
There’s this pretty well known quote that gets thrown around a lot, and it’s often attributed to Albert Einstein, and it goes, “Now whether or not Einstein was the person who actually said this, let’s be real he probably wasn’t.” It’s still really insight…
Identifying individuals, variables and categorical variables in a data set | Khan Academy
We’re told that millions of Americans rely on caffeine to get them up in the morning, which is true. Although, if I drink caffeine in the morning, I’m very sensitive; I wouldn’t be able to sleep at night. Here’s nutritional data on some popular drinks at…
The #1 PROBLEM with Betterment Investing
What’s up you guys, it’s Graham here. So lately there’s been a very big focus towards investment apps and high interest savings accounts that offer you a pretty substantial value for what it is. Like, at first we had a lie bank with their 2.2 percent int…
Homeroom with Sal & Mayim Bialik - Friday, February 12
Hi everyone! Sal Khan here from Khan Academy. Welcome to the, uh, the homeroom live stream. Uh, you might notice I’ve upgraded my equipment at Felipe’s request, and so this is like now in HD, so this is a very, very, very exciting day. So, we have a very…
Ratios and double number lines
We’re told the double number line shows that five pounds of avocados cost nine dollars. So, what is going on here with this double number line? This shows how, as we increase the number of avocados, how the cost increases. For example, when we have zero …
Multiplicity of zeros of polynomials | Polynomial graphs | Algebra 2 | Khan Academy
So what we have here are two different polynomials, p1 and p2, and they have been expressed in factored form. You can also see their graphs. This is the graph of y is equal to p1 of x in blue, and the graph of y is equal to p2 of x in white. What we’re g…