yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Approximation with local linearity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We're told the function ( f ) is twice differentiable with ( f(2) = 1 ), ( f'(2) = 4 ), and ( f''(2) = 3 ). What is the value of the approximation of ( f(1.9) ) using the line tangent to the graph of ( f ) at ( x = 2 )? So pause this video and see if you can figure this out. This is an actual question from a past AP calculus exam.

All right, now let's do this together. If I was actually doing this on the exam, I would just cut to the chase and I would figure out the equation of the tangent line at ( x = 2 ) going through the point ( (2, 1) ), and then I would figure out, okay, when ( x = 1.9 ), what is the value of ( y )? That would be my approximation. But for the sake of learning and getting the intuition here, let's just make sure we understand what's happening.

So let me graph this. Let's say that's my ( y )-axis, and then this is my ( x )-axis. This is ( x = 1 ), this is ( x = 2 ), this is ( y = 1 ). We know that the point ( (2, 1) ) is on the graph of ( y = f(x) ), so we know that point right over there is there. And we also know the slope of the tangent line. The slope of the tangent line is ( 4 ). So it's going to look something like this; it's going to probably even be a little steeper than that.

The slope of the tangent line is going to look something like that. We don't know much more about it; we know the second derivative here. But what they're asking us to do is, without knowing what the function actually looks like, the function might look something like this. Let me just draw something. So the function might look something like this.

We're trying to figure out what ( f(1.9) ) is, so if ( x = 1.9 ), ( f(1.9) ) — if that's the way the function actually looked — might be this value right over here. But we don't know for sure because we don't know much more about the function. What they're suggesting for us to do is use this tangent line.

If we know the equation of this tangent line here, we can say, well, what does that tangent line equal when ( x = 1.9 )? When ( x = 1.9 ), it equals that point right over there, and then we could use that as our approximation for ( f(1.9) ).

Well, to do that, we know we need to know the equation of the tangent line, and we could do that in point-slope form. We would just have to say ( y - ) the ( y ) value that we know is on that line. The point ( (2, 1) ) we know is on that line, so ( y - 1 ) is going to be equal to the slope of our tangent line, which we know is going to be equal to ( 4 ) times ( x - ) the ( x ) value that corresponds to that ( y ) value, so ( x - 2 ).

So now we just have to substitute ( x = 1.9 ) to get our approximation for ( f(1.9) ). So we'd say ( y - 1 = 4(1.9 - 2) ). ( 1.9 - 2 ) is ( -0.1 ), and let's see, ( 4 \times -0.1 ) — this all simplifies to ( -0.4 ).

Now you add ( 1 ) to both sides; you get ( y = 1 - 0.4 ). If you add ( 1 ) here, you're gonna get ( 0.6 ). So this — I didn't draw it quite to scale — ( 0.6 ) might be something closer to right around there, but there you go. That is our approximation for ( f(1.9) ), which is choice ( b ), and we're done.

One interesting thing to note is we didn't have to use all the information they gave us. We did not have to use this information about the second derivative in order to solve the problem. So if you ever find yourself in that situation, don't doubt yourself too much because they will sometimes give you unneeded information.

More Articles

View All
RC step response 3 of 3 example
In the last video, we worked out the step response of an RC circuit, and now we’re going to look at a real example. So, this is our answer. This is the step response, the total response to our circuit to a step input. What does this look like? So, I’m go…
Analyzing mosaic plots | Exploring two-variable data | AP Statistics | Khan Academy
We’re told that administrators at a school are considering a policy change. They survey a group of students, staff members, and parents about whether or not they agree with the new policy. The following mosaic plot summarizes their results. Which of the f…
Using the reaction quotient | Equilibrium | AP Chemistry | Khan Academy
The reaction quotient is symbolized by the capital letter Q, and it tells us whether a reaction is at equilibrium or not. If the reaction is not at equilibrium, it also allows us to predict which direction the net reaction will go to reach equilibrium. F…
2015 AP Chemistry free response 3b | Chemistry | Khan Academy
A total of 29.95 milliliters of 1.25 molar hydrochloric acid is required to reach the equivalence point. Calculate the concentration of potassium sorbate when you put the brackets; they’re talking about concentration in the stock solution. So, let’s just…
How to Build a Startup Without Funding by Pieter Levels @dojobalicoworking3342@ Dojo Bali
(Clapping) I’ve done a lot of building startups and side projects in the last four years. They’re mostly bootstrapped, and bootstrapped means that you build a business without any funding. So you don’t go to San Francisco. You don’t get venture capital fr…
A day in my life in JAPAN vlog- A productive day
Good morning. Good morning! I start my day by having my grandparents’ traditional Japanese breakfast. We always have a piece of salmon grilled and then a huge salad, rice, and a miso soup. After my breakfast, I always have a cup of coffee because I’m lite…