yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Approximation with local linearity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We're told the function ( f ) is twice differentiable with ( f(2) = 1 ), ( f'(2) = 4 ), and ( f''(2) = 3 ). What is the value of the approximation of ( f(1.9) ) using the line tangent to the graph of ( f ) at ( x = 2 )? So pause this video and see if you can figure this out. This is an actual question from a past AP calculus exam.

All right, now let's do this together. If I was actually doing this on the exam, I would just cut to the chase and I would figure out the equation of the tangent line at ( x = 2 ) going through the point ( (2, 1) ), and then I would figure out, okay, when ( x = 1.9 ), what is the value of ( y )? That would be my approximation. But for the sake of learning and getting the intuition here, let's just make sure we understand what's happening.

So let me graph this. Let's say that's my ( y )-axis, and then this is my ( x )-axis. This is ( x = 1 ), this is ( x = 2 ), this is ( y = 1 ). We know that the point ( (2, 1) ) is on the graph of ( y = f(x) ), so we know that point right over there is there. And we also know the slope of the tangent line. The slope of the tangent line is ( 4 ). So it's going to look something like this; it's going to probably even be a little steeper than that.

The slope of the tangent line is going to look something like that. We don't know much more about it; we know the second derivative here. But what they're asking us to do is, without knowing what the function actually looks like, the function might look something like this. Let me just draw something. So the function might look something like this.

We're trying to figure out what ( f(1.9) ) is, so if ( x = 1.9 ), ( f(1.9) ) — if that's the way the function actually looked — might be this value right over here. But we don't know for sure because we don't know much more about the function. What they're suggesting for us to do is use this tangent line.

If we know the equation of this tangent line here, we can say, well, what does that tangent line equal when ( x = 1.9 )? When ( x = 1.9 ), it equals that point right over there, and then we could use that as our approximation for ( f(1.9) ).

Well, to do that, we know we need to know the equation of the tangent line, and we could do that in point-slope form. We would just have to say ( y - ) the ( y ) value that we know is on that line. The point ( (2, 1) ) we know is on that line, so ( y - 1 ) is going to be equal to the slope of our tangent line, which we know is going to be equal to ( 4 ) times ( x - ) the ( x ) value that corresponds to that ( y ) value, so ( x - 2 ).

So now we just have to substitute ( x = 1.9 ) to get our approximation for ( f(1.9) ). So we'd say ( y - 1 = 4(1.9 - 2) ). ( 1.9 - 2 ) is ( -0.1 ), and let's see, ( 4 \times -0.1 ) — this all simplifies to ( -0.4 ).

Now you add ( 1 ) to both sides; you get ( y = 1 - 0.4 ). If you add ( 1 ) here, you're gonna get ( 0.6 ). So this — I didn't draw it quite to scale — ( 0.6 ) might be something closer to right around there, but there you go. That is our approximation for ( f(1.9) ), which is choice ( b ), and we're done.

One interesting thing to note is we didn't have to use all the information they gave us. We did not have to use this information about the second derivative in order to solve the problem. So if you ever find yourself in that situation, don't doubt yourself too much because they will sometimes give you unneeded information.

More Articles

View All
Determining if a function is invertible | Mathematics III | High School Math | Khan Academy
[Voiceover] “F is a finite function whose domain is the letters a to e. The following table lists the output for each input in f’s domain.” So if x is equal to a, then if we input a into our function, then we output -6. f of a is -6. We input b, we get …
Exploring scale copies
We are told drag the sliders, and then they say which slider creates a scale copy of the shape, or which slider creates scale copies of the shape. So, let’s just see, explore this a little bit. Okay, that’s pretty neat! These sliders seem to change the s…
Fundraising Panel at Female Founders Conference 2015
Wow, this is awesome! There are so many women in the audience, and I am so happy to be here with you. So, um, I’m Danielle, as Cat introduced, and I want to talk to you a little bit about fundraising. We’re going to have a panel in just a minute and have …
The Dark History of ChatGPT
The world was still coming to terms with the powers of the artificial intelligence chatbot called ChatGPT when GPT-4 was released in March of 2023. GPT-4 is miles ahead of GPT-3.5, the engine on which ChatGPT is running. At the time of writing, GPT-4 can …
The Flow State: How to Supercharge Your Life
In 1993, Michael Jordan led the Chicago Bulls to victory over the Phoenix Suns in what is widely known as his greatest NBA Finals ever. He averaged 41 points per game, the highest ever in NBA Finals history, cementing his place as one of the greatest, if …
Hexagons are the Bestagons
[Playful instrumental synth music fades slowly] You know… You know… Hexagons are the bestagons. Why? Because bees. Bees are the best and build only the bestagon, the hexagon. Now, I know what you’re thinking. Bees build hexagons because they’re hexapods …