yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How AI, Like ChatGPT, *Really* Learns


2m read
·Nov 7, 2024

The main video is talking about a genetic breeding model of how to make machines learn. This method is simpler to explain or just show. Here is a machine learning to walk, or play Mario, or jump really high. A genetic code is an older code, but it still checks out, and I personally suspect in the future genetic models will have a resurgence as compute power approaches crazy pants.

However, the current hotness is deep learning and recursive neural networks, and that is where the linear algebra really increases and explainability in a brief video really decreases. But if I had to kind of explain how they work in a footnote, just for the record, it's like this: No infinite warehouse. Just one student. Teacher Bot has the same test, but this time Builder Bot is 'Dial Adjustment Bot,' where each dial is how sensitive one connection in the student bot's head is.

There's a lot of connections in its head, so a lot of dials. A LOT, a lot. Teacher Bot shows Student Bot a photo, and Dial Adjustment Bot adjusts that dial stronger or weaker to get Student Bot closer to the answer. It's a bit like adjusting the dial on a radio. Is that still a thing? Do cars have radios still? I don't know, anyway.

You might not know the exact frequency of the station, but you can tell if you're getting closer or further away. It's like that but with a hundred thousand dials and a lot of math, and that's just for one test question. When Teacher Bot introduces the next photo, Dial Adjustment Bot needs to adjust all the dials so that Student Bot can answer both questions. As the test gets longer, this becomes an insane amount of math and fine-tuning for Dial Adjustment Bot.

But when it's done, there's a student bot who can do a pretty good job at recognizing new photos, though still suffers from some of the problems mentioned in the main video. Anyway, that's the most babies' first introduction to neural networks you will ever hear. If it sounds interesting to you and you like math and code, go dig into the details; machines that learn are the future of everything.

Maybe, quite literally, the future of everything, and given what we've put them through, may the bots have mercy on us all.

More Articles

View All
Tangram Paradoxes
I can take the seven pieces of a tangram and arrange them into a shape called the monk, but I can take the same seven pieces and arrange them into a monk with no feet. Wait, what? Where’d the foot go? How can these be made of the same pieces? Is it magic…
Mayans and Teotihuacan | World History | Khan Academy
The Mayan civilization is one of the most long-lasting civilizations, not just in the ancient Americas, but in the world in general. You can see the rough outline here on this map of where the Mayan civilization occurred. You can see it has the Yucatan Pe…
Plastic Pollution: How Humans are Turning the World into Plastic
When the gods granted king Midas one wish, he wished that everything he touched would turn to gold. Midas was delighted. Trees, rocks, buildings— all gold. But soon he found in horror that his food turned into gold as well. When he hugged his daughter to …
15 Ways To Think About Money
What if we told you that most of you were thinking about money in the wrong way? The average person has no idea what money really is and how to leverage it for a life filled with freedom. They use it to pay bills, buy food, and acquire things that they us…
Exploring Iceland in Winter | National Geographic
Iceland is full of stories. As a National Geographic photographer, I voyage across the circumpolar Arctic, immersing myself in some of the most raw yet beautiful places on the planet. For this adventure, I’m exploring Iceland in winter. This time of year…
Discontinuities of rational functions | Mathematics III | High School Math | Khan Academy
So we have this function ( f(x) ) expressed as a rational expression here, or defined with a rational expression. We’re told that each of the following values of ( x ) selects whether ( f ) has a zero, a vertical asymptote, or a removable discontinuity. …