yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 5d | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Let k equals 6, so that f of x is equal to 1 over x squared minus 6x. Find the partial fraction decomposition for the function f, find the integral of f of x dx.

And so, let's first think about the partial fraction decomposition for the function f. So, f of x, I could rewrite it where I factor the denominator. If I factor out an x, I get x times x minus 6, and so I can rewrite this as— and this is where I'm going to decompose it into partial fractions: a over x plus b over x minus 6.

And if I actually had to add these two, I would try to find a common denominator. The best common denominator is just to take the product of these two expressions. So, I can multiply the numerator and the denominator of this first term by x minus 6, and then the numerator and denominator of the second term I can multiply by the denominator of the other one, so times x and times x.

And so that would give us— let’s see, if I distribute the a, it would give us a x minus 6a plus bx plus b over x times x minus 6. If this looks completely foreign to you, I encourage you to watch the videos on Khan Academy on partial fraction decomposition.

All right, so let's see if we can— so what we want to do is we want to solve for the a's and we want to solve for the b's. And so let’s see if we see that these have to add up to 1 over x times x minus 6. So, these have to add up— I’m just going back to this— these have to add up to the numerator, so it has to add up to 1 over x times x minus 6.

And so, this numerator has to add up to 1. So, what we can see is that the x terms right over here must cancel out, since we have no x terms here. So, we have a x plus b x must be equal to zero, or you could say, well that means that a plus b is equal to zero. So, we took care of that term and that term, and then we know that this must be the constant term that adds up to one, or that is equal to one.

And so, we also know that negative 6a is equal to one, or a is equal to— divide both sides by negative 6— negative 1/6. And then if a is negative 1/6, well b is going to be the negative of that. We have negative 1/6 plus b— I’m just substituting a back into that equation— need to be equal to 0. And so, add 1/6 to both sides, you get b is equal to 1/6.

So, I can decompose f of x. I can decompose f of x as being equal to a over x, so that’s negative 1/6 over x. I just write it that way. I could write it as negative 1 over 6x or something like that, but I’ll just write it like this just to be clear that this was our a plus b, which is 1/6 over x minus 6 over x minus 6.

So that right over there, that’s the partial fraction decomposition for our function f. And if I want to evaluate the integral— so the integral of f of x, the indefinite integral— well, that’s where this partial fraction decomposition is going to be valuable. That’s going to be the indefinite integral of negative 1/6 over x plus positive 1/6 over x minus 6, and then we have dx.

Well, what’s the anti-derivative of this right over here? Well, the anti-derivative of 1 over x is the natural log of the absolute value of x. And so, we can just say this is going to be negative 1/6 times the natural log of the absolute value of x. That’s the anti-derivative of this part, and then plus 1/6— plus 1/6.

You could do u substitution, but you could just say, hey look, the derivative of this bottom part x minus 6, that’s just 1. And so you could say that, okay, I have that derivative laying around and so this is— so I can just take the anti-derivative with respect to that. And so that’s going to be 1/6 times the natural log of the absolute value of x minus 6.

And then I have— and then I have plus c. Don’t forget this is an indefinite integral over here, and then you’re done. And you see that that partial fraction decomposition was actually quite useful, so they were helping us how to figure out this. You didn’t just have to have that insight—they're like, okay, how do I evaluate this anti-derivative? Well, they’re telling us to use partial fraction decomposition.

More Articles

View All
Ocean acidification | Biodiversity and human impacts | High school biology | Khan Academy
In this video, we’re going to talk a little bit about ocean acidification. As we’ll see, it’s all related to increased carbon dioxide concentrations in the atmosphere. We have talked about this in other videos, but we can see if we look at carbon dioxide …
YC Fireside: Surbhi Sarna + Reshma Shetty and Jason Kelly - Founders of Ginkgo Bioworks
Hi, welcome Reshma and Jason and everybody on the call. Hi, my gosh, I am so excited to chat with the two of you, pioneers in the field of synthetic biology. So to kick us off, the audience today is going to be a mix of people with a tech background and …
How to Survive a Parachute Jump Without a Parachute #shorts
Your parachute has failed, and you’ll hit the ground in 60 seconds. You’re falling at around 190 km an hour. Your best bet to slow down is increasing your air resistance by making an X shape. We’re not going to lie to you; the odds aren’t great, but here…
Curvature formula, part 2
In the last video, I started to talk about the formula for curvature. Just to remind everyone of where we are, you imagine that you have some kind of curve in, let’s say, two-dimensional space, just for the sake of being simple. Let’s say this curve is pa…
My Response To Dave Ramsey
What’s up you guys? It’s Grahe here. So I normally don’t make response videos here in the channel, but after watching a 1-hour upload from the personal finance host Dave Ramsey, I wanted to dive deeper into one of the most controversial and debated topics…
Finding specific antiderivatives: rational function | AP Calculus AB | Khan Academy
So we’re told that ( F(2) ) is equal to 12. ( F’ ) prime of ( x ) is equal to ( \frac{24}{x^3} ), and what we want to figure out is what ( F(-1) ) is. Alright, so they give us the derivative in terms of ( x ), so maybe we can take the antiderivative of t…