yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How to recognize relative and absolute maxima and minima | Functions | Algebra I | Khan Academy


3m read
·Nov 11, 2024

We're asked to mark all the relative extremum points in the graph below. So pause the video and see if you can have a go at that. Just try to maybe look at the screen and in your head see if you can identify the relative extrema.

So now let's do this together. There are two types of relative extrema: you have your relative maximum points, and you have your relative minimum points. A relative maximum point or a relative minimum, they're relatively easy to spot out visually. You will see a relative maximum point as the high point on a hill, and the hill itself doesn't even have to be the highest hill. For example, the curve could go at other parts of the domain of the function could go to higher values. It could also look like the peak of a mountain. Once again, since we're talking about the relative maxima, this mountain peak doesn't have to be the highest mountain peak. There could be higher mountains, and actually, each of these peaks would be a relative maximum point.

Now, relative minima are the opposite; they would be the bottom of your valleys. So that's a relative minimum point. This right over here is a relative minimum point, even if there are other parts of the function that are lower. Now, there's also an edge case for both relative maxima and relative minima, and that's where the graph is flat. So if you have parts of your function where it's just constant, these points would actually be both. For example, if this is our x-axis right over here, that's our x-axis. If this is our y-axis right over there, and if this is x equals c, if you construct an open interval around c, you notice that the value of our function at c, f of c, is at least as large as the values of the function around it, and it is also at least as small as the values of the function around it. So this point would also be considered a relative minimum point.

But that's an edge case that you won't encounter as often. So with that primer out of the way, let's identify the relative extrema. First, the relative maximum points—well, that's the top of a hill right over there; this is the top of a hill. You might be tempted to look at that point at that point, but notice at this point right over here, if you go to the right, you have values that are higher than it, so it's really not at the top of a hill. And right over here, if you go to the left, you have values that are higher than it, so it's also not the top of a hill.

And what about the relative minimum points? Well, this one right over here is a relative minimum point; this one right over here is a relative minimum point, and this one over here is a relative minimum point. Now, let's do an example dealing with absolute extrema. Here we're told to mark the absolute maximum and the absolute minimum points in the graph below. So once again, pause this video and see if you can have a go at this.

You have an absolute maximum point at, let's say, x equals c if and only if. So I'll write "if" for "if and only if" f of c is greater than or equal to f of x for all the x's in the domain of the function. And you have an absolute minimum at x equals c if and only if f of c is less than or equal to f of x for all the x's over the domain. So another way to think about it is the absolute maximum point is the high point. So over here, that is the absolute maximum point. And then the absolute minimum point is interesting because, in this case, it would actually happen at one of the endpoints at our domain. So that is our absolute max, and this right over here is our absolute min.

Now, once again, there is an edge case that you will not see too frequently. For example, if this function did something like this: if it went up like this and then it just stayed flat like this, then this would no longer be an absolute maximum point. But any of these points in this flat region, because they're at least as high as any other points on our entire curve, any of those could be considered absolute maximum points. But we aren't dealing with that edge case in this example, and you're less likely to see that. So in most problems, it's pretty easy to pick out because the absolute highest point of the curve will often be your absolute maximum, and the absolute lowest point on your curve will be your absolute minimum.

More Articles

View All
Your brain is lying to you..
Your brain lies to you every day, and you don’t even know it. The human brain is powerful; there’s no doubt about that, but it has its limitations. Your mind loves to simplify information, mainly for speed, and this results in cognitive bias. These biases…
Young Haitian Photographers Capture Haiti in a New Light | National Geographic
If Haiti doesn’t want you here, she is living everything in her power to make you so miserable that you will run screaming for the next airplane out. But if she loves you, if she sees in you a kindred spirit, she rings your heart out every day and she has…
Why Should We Go to Mars? | MARS
[Music] The reason humans should go to Mars is because we’re human. I mean, we are an exploring species. It’s what’s made us the dominant species on this planet. If we only lived in one little plot of land on Earth and we never went anywhere, I would say,…
The First Monotheistic Pharaoh | The Story of God
Amid the remains of dozens of pharaohs, Egyptologist Salma Ikram is going to help me find one whose name is Akhenaten. There he is! Yep, he thought that there were too many gods and not enough focus on him. There will need to be an important god whom onl…
This Low-Cost Robot Can Help You Explore the Ocean | Nat Geo Live
DAVID LANG: A few years ago, I had this big epiphany. How do we shift from just something we’re building together to all of these ways that we could be exploring together? We’re building the largest ocean observation network in the world and we’re doing i…
How Wildlife Is Bouncing Back In This African Park | National Geographic
Love, love, passion! Show up! That is easy for you to become a ranger. When I came here in 1993, there was no animals. My jet air was empty before tourism, before bringing animals, before everything. There’s a need for a team to protect my Jetta. I remem…