yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Meaning of the reciprocal


3m read
·Nov 10, 2024

Let's talk a little bit about reciprocals. Now, when you first learn reciprocals, some folks will immediately tell you, "Hey, just swap the numerator and the denominator."

So, for example, if I have the fraction two-thirds, the reciprocal of two-thirds, if I swap the numerator and the denominator, is three-halves. If I had the fraction five-sixths, the reciprocal of that is going to be six-fifths.

And that's all well and good, but what does this actually mean? Well, one interpretation of a reciprocal is it's the number that when you multiply it by the original number, you get one.

So, two-thirds times three-halves equals one, or five-sixths times six-fifths equals one. Another way to think about reciprocals is how many of that number, or how many of that fraction, fit into one.

So, if I were to take one and I divide it by two-thirds, one interpretation of this is saying how many two-thirds fit into one. If I take one divided by five-sixths, an interpretation of this is how many five-sixths fit into one. And we'll see that three-halves of a two-thirds fit into one, and we'll see that in a second, or that six-fifths of a five-sixths fit into one.

So, let's start with a very straightforward example. Let's say that I have the fraction one-half. So, if I have one-half, if that whole rectangle is a whole, this is one-half here.

So, if I were to ask how many one-halves fit into one, so one divided by one-half, how many one-halves fit into one? Well, I have one one-half right over here, and then I would have another one-half right over there. So, we have two one-halves, so this is equal to two.

Now, you might be saying, "Wait, two doesn't look like I just swapped the numerator and the denominator," but you have to realize that two is the same thing as two wholes. So, the reciprocal of one-half is indeed two over one, or if you take two over one, and if you have two one-halves, that is indeed going to be equal to one.

But now, let's work on two-thirds, things that are a little bit more nuanced. So, two-thirds, here I can shade that in. That's one-third, and then two-thirds. So, this right over here is two-thirds. Now, how many of these fit into one?

If we were to say what's one divided by two-thirds, well, we can clearly get a whole two-thirds into one, and then we can get another third, which is half of a two-thirds. So, we can have a whole two-thirds, and then half of a two-thirds, or one-and-a-half two-thirds.

So, we could say one divided by two-thirds is equal to one-and-a-half. Well, one-and-a-half is the exact same thing as three-halves. So, once again, you can see that three-halves times two-thirds is equal to one, or that three-halves of a two-thirds fit into one.

Let's do another example. If we were to think about three-halves, so three-halves would be, let's see, that's a half, that's two halves, and then this is three-halves right over here. So, let me mark all of that.

So, this whole thing right over here is three-halves. Now, how many three-halves fit into a whole? Well, you can see that you can't even fit a whole three-halves into a whole. You can only fit two of the three-halves.

So, one one-half and two halves of the three-halves. So, what you can see here is that this is two-thirds of the three-halves. So, if you say one divided by three-halves, how many three-halves can fit into one? Well, you can always fit two-thirds of a three-halves into one.

And this is interesting because the reciprocal of two-thirds is three-halves, and the reciprocal of three-halves is two-thirds.

More Articles

View All
Underground Templar Caves | Lost Cities with Albert Lin
Ah! Eliezer? Yes. It’s so nice to meet you. Welcome, welcome. This is beautiful! Yes! This is where the Templars actually hung out? In here? No, no, no. This is not the Templar. We are in the right place, but in the wrong time. Let’s go. If we want to se…
Adding rational expression: unlike denominators | High School Math | Khan Academy
Pause the video and try to add these two rational expressions. Okay, I’m assuming you’ve had a go at it. Now we can work through this together. So, the first thing that you might have hit when you tried to do it is you realize that they have different de…
High Tech or No Tech: Should You Unplug in National Parks? | National Geographic
How much more I spend on my phone than what I used to is ridiculous. I look at my little brothers and stuff. There are definitely weekends where me and him will sit inside and play on our computers. All they do is sit on video games and the computer. I te…
Ray Dalio On The Biggest Failure of His Career
So you had this huge failure after being wildly successful very early on in your life. You had to borrow $4,000 from your parents, and he started to reflect on this, and he came up with this very interesting principle: pain plus reflection is equal to pro…
Multiplication as repeated addition
So as some of you already know, I really enjoy eating a good avocado, which despite its appearance that it looks like a vegetable, but it’s actually a fruit. Let’s say that I eat two avocados per day, and I eat two avocados per day for six days. Now, the…
Safari Live - Day 320 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Everybody welcome to the Sunsets Safari here in Juma in the Sabi Sands. That was a southern black flycatcher, and my name i…