yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Meaning of the reciprocal


3m read
·Nov 10, 2024

Let's talk a little bit about reciprocals. Now, when you first learn reciprocals, some folks will immediately tell you, "Hey, just swap the numerator and the denominator."

So, for example, if I have the fraction two-thirds, the reciprocal of two-thirds, if I swap the numerator and the denominator, is three-halves. If I had the fraction five-sixths, the reciprocal of that is going to be six-fifths.

And that's all well and good, but what does this actually mean? Well, one interpretation of a reciprocal is it's the number that when you multiply it by the original number, you get one.

So, two-thirds times three-halves equals one, or five-sixths times six-fifths equals one. Another way to think about reciprocals is how many of that number, or how many of that fraction, fit into one.

So, if I were to take one and I divide it by two-thirds, one interpretation of this is saying how many two-thirds fit into one. If I take one divided by five-sixths, an interpretation of this is how many five-sixths fit into one. And we'll see that three-halves of a two-thirds fit into one, and we'll see that in a second, or that six-fifths of a five-sixths fit into one.

So, let's start with a very straightforward example. Let's say that I have the fraction one-half. So, if I have one-half, if that whole rectangle is a whole, this is one-half here.

So, if I were to ask how many one-halves fit into one, so one divided by one-half, how many one-halves fit into one? Well, I have one one-half right over here, and then I would have another one-half right over there. So, we have two one-halves, so this is equal to two.

Now, you might be saying, "Wait, two doesn't look like I just swapped the numerator and the denominator," but you have to realize that two is the same thing as two wholes. So, the reciprocal of one-half is indeed two over one, or if you take two over one, and if you have two one-halves, that is indeed going to be equal to one.

But now, let's work on two-thirds, things that are a little bit more nuanced. So, two-thirds, here I can shade that in. That's one-third, and then two-thirds. So, this right over here is two-thirds. Now, how many of these fit into one?

If we were to say what's one divided by two-thirds, well, we can clearly get a whole two-thirds into one, and then we can get another third, which is half of a two-thirds. So, we can have a whole two-thirds, and then half of a two-thirds, or one-and-a-half two-thirds.

So, we could say one divided by two-thirds is equal to one-and-a-half. Well, one-and-a-half is the exact same thing as three-halves. So, once again, you can see that three-halves times two-thirds is equal to one, or that three-halves of a two-thirds fit into one.

Let's do another example. If we were to think about three-halves, so three-halves would be, let's see, that's a half, that's two halves, and then this is three-halves right over here. So, let me mark all of that.

So, this whole thing right over here is three-halves. Now, how many three-halves fit into a whole? Well, you can see that you can't even fit a whole three-halves into a whole. You can only fit two of the three-halves.

So, one one-half and two halves of the three-halves. So, what you can see here is that this is two-thirds of the three-halves. So, if you say one divided by three-halves, how many three-halves can fit into one? Well, you can always fit two-thirds of a three-halves into one.

And this is interesting because the reciprocal of two-thirds is three-halves, and the reciprocal of three-halves is two-thirds.

More Articles

View All
Warren Buffett: How to Make Money During the 2023 Recession
So if you’re worried about the economy right now, you’re in pretty good company. According to a study done by CNBC, a whopping 81% of Americans are worried that a recession will be hitting the U.S. this year. You can add billionaire investor Warren Buffet…
The Real Estate Investor who has over 80 tenants paying him EVERY MONTH!
A spacious studio with character and charm. No one can hear your screams. Oh Shh! Once you put it into wood, it’s gonna shake your arm a lot. What’s up, you guys? It’s Graham here. So, I’m about to meet up with a real estate investor here in London, Ontar…
Make Abundance for the World
Yeah, I think there’s this notion that making money is evil, right? It’s like rooted all the way back down to money’s the root of all evil. People think that the bankers steal our money, and you know, it’s somewhat true in that in a lot of the world, ther…
Exponential and logistic growth in populations | High school biology | Khan Academy
Let’s say that we were starting with a population of 1,000 rabbits, and we know that this population is growing at 10% per month. What I want to do is explore how that population will grow if it’s growing at 10% per month. So, let’s set up a little table …
Using the Teacher Skills Report to drive differentiation on Khan Academy
Today, I will show you how to use the skills overview report in the teacher dashboard on Khan Academy. Once you have logged into Khan Academy, go to your teacher dashboard. Once you are in your teacher dashboard, on the left-hand panel under Tools, click …
The Future of Driving | Years of Living Dangerously
TY BURRELL: Now that I’ve learned self-driving cars aren’t that far off, what about ride sharing? Are companies like Lyft and Uber going to be part of the solution? How you doing? All right? What are the odds? You are John Zimmer, President of Lyft. You g…