yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Meaning of the reciprocal


3m read
·Nov 10, 2024

Let's talk a little bit about reciprocals. Now, when you first learn reciprocals, some folks will immediately tell you, "Hey, just swap the numerator and the denominator."

So, for example, if I have the fraction two-thirds, the reciprocal of two-thirds, if I swap the numerator and the denominator, is three-halves. If I had the fraction five-sixths, the reciprocal of that is going to be six-fifths.

And that's all well and good, but what does this actually mean? Well, one interpretation of a reciprocal is it's the number that when you multiply it by the original number, you get one.

So, two-thirds times three-halves equals one, or five-sixths times six-fifths equals one. Another way to think about reciprocals is how many of that number, or how many of that fraction, fit into one.

So, if I were to take one and I divide it by two-thirds, one interpretation of this is saying how many two-thirds fit into one. If I take one divided by five-sixths, an interpretation of this is how many five-sixths fit into one. And we'll see that three-halves of a two-thirds fit into one, and we'll see that in a second, or that six-fifths of a five-sixths fit into one.

So, let's start with a very straightforward example. Let's say that I have the fraction one-half. So, if I have one-half, if that whole rectangle is a whole, this is one-half here.

So, if I were to ask how many one-halves fit into one, so one divided by one-half, how many one-halves fit into one? Well, I have one one-half right over here, and then I would have another one-half right over there. So, we have two one-halves, so this is equal to two.

Now, you might be saying, "Wait, two doesn't look like I just swapped the numerator and the denominator," but you have to realize that two is the same thing as two wholes. So, the reciprocal of one-half is indeed two over one, or if you take two over one, and if you have two one-halves, that is indeed going to be equal to one.

But now, let's work on two-thirds, things that are a little bit more nuanced. So, two-thirds, here I can shade that in. That's one-third, and then two-thirds. So, this right over here is two-thirds. Now, how many of these fit into one?

If we were to say what's one divided by two-thirds, well, we can clearly get a whole two-thirds into one, and then we can get another third, which is half of a two-thirds. So, we can have a whole two-thirds, and then half of a two-thirds, or one-and-a-half two-thirds.

So, we could say one divided by two-thirds is equal to one-and-a-half. Well, one-and-a-half is the exact same thing as three-halves. So, once again, you can see that three-halves times two-thirds is equal to one, or that three-halves of a two-thirds fit into one.

Let's do another example. If we were to think about three-halves, so three-halves would be, let's see, that's a half, that's two halves, and then this is three-halves right over here. So, let me mark all of that.

So, this whole thing right over here is three-halves. Now, how many three-halves fit into a whole? Well, you can see that you can't even fit a whole three-halves into a whole. You can only fit two of the three-halves.

So, one one-half and two halves of the three-halves. So, what you can see here is that this is two-thirds of the three-halves. So, if you say one divided by three-halves, how many three-halves can fit into one? Well, you can always fit two-thirds of a three-halves into one.

And this is interesting because the reciprocal of two-thirds is three-halves, and the reciprocal of three-halves is two-thirds.

More Articles

View All
Probability with combinations example: choosing groups | Probability & combinatorics
We’re told that Kyra works on a team of 13 total people. Her manager is randomly selecting three members from her team to represent the company at a conference. What is the probability that Kyra is chosen for the conference? Pause this video and see if yo…
Radical functions differentiation intro | Derivative rules | AP Calculus AB | Khan Academy
Let’s say that we have a function f of x, and it is equal to -4 times the cube root of x. What we want to do is evaluate the derivative of our function when x is equal to 8. So, see if you can figure this out. All right, now this might look foreign to yo…
Algorithms and selection | Intro to CS - Python | Khan Academy
Imagine you’re playing a word game where you need to guess only three words. What strategy might you use to solve for all the words in this game? One approach might be to just guess all of the letters in alphabetical order. So you start by guessing A, the…
Ask Sal Anything! Homeroom Wednesday, July 15
Hi everyone! Welcome to our homeroom live stream. Sal here from Khan Academy. Uh, before we get into, uh, our guest, who is me today, it’s just going to be an ask me anything type of thing. So actually start putting your questions on Facebook and YouTube…
Solving equations by graphing: intro | Algebra 2 | Khan Academy
We’re told this is the graph of y is equal to three halves to the x, and that’s it right over there. Use the graph to find an approximate solution to three halves to the x is equal to five. So pause this video and try to do this on your own before we work…
15 Things Not Worth Your Time
Today, we’re focusing on saving your most precious asset: time. We’ve compiled a list of 15 things that are simply not worth the seconds ticking away on your life’s clock. Let’s dive in. Welcome to Alux. First up, chasing approval. Chasing approval is a …