yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Extending geometric sequences | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

So we're told that the first four terms of a geometric sequence are given. They give us the first four terms. They say, what is the fifth term in the sequence?

And like always, pause the video and see if you can come up with the fifth term. Well, all we have to remind ourselves is for a geometric sequence, for a geometric sequence, each successive term is the previous term multiplied by some number, and that number we call the common ratio.

So let's think about it. To go from negative 1/32, that's the first term, to 1/8, what do we have to multiply by? What do we have to multiply by? Let's see, we're going to multiply. It's going to be multiplied by a negative since we went from a negative to a positive. So we're going to multiply. We're going to multiply by negative, and then it's going to be a 1 over—let's see—to go from a 32 to an 8. Actually, it's not going to be a 1 over; it's going to be—this is 4 times as large as that. It's going to be negative 4.

Negative 1/32 times negative 4 is positive 1/8. Just to make that clear, negative 1/32 times negative 4. That's the same thing as times negative 4 over 1. It's going to be positive—negative times a negative is a positive—positive 4 over 32, which is equal to 1/8.

And let's see if that holds up. So to go from 1/8 to negative 1/2, we once again would multiply by negative 4. Negative 4 times 1/8 is negative 4/8, which is negative 1/2.

And so then we multiply by negative 4 again. So let me make it clear. We're multiplying by negative 4 each time. You multiply by negative 4 again, you get to positive 2. Because negative 4—negative negative 4 over negative 2—you can view it that way—is positive 2.

And so to get the fifth term in the sequence, we would multiply by negative 4 again. And so 2 times negative 4 is negative 8.

Negative 4 is the common ratio for this geometric sequence. But just to answer the question, what is the fifth term? It is going to be negative 8.

More Articles

View All
Equivalent fractions on number lines
So they’re telling us that r fifths is equal to eight tenths, and we need to figure out what r is going to be equal to. They help us out with this number line where they’ve put eight tenths on the number line. That makes sense because to go from zero to o…
Production Possibilities Curve PPC as a model of a nation's output | Macroeconomics | Khan Academy
We are now going to study the magical Republic of Fitlandia. As we often do in economics, we’re going to assume that Fitlandia, which of course does not exist in the real world, is a very simple country. It helps us create a model for it. Let’s say that F…
Flying the Piaggio at 41,000 Feet (Max Altitude!)
Hello from beautiful Jackson Hall, Wyoming, one of my all-time favorite airports to fly out of. We’re back in the Piaggio; you guys have been asking for more content with this thing, so here we are. Today, we’re going to push this airplane to its limits, …
Finding increasing interval given the derivative | AP Calculus AB | Khan Academy
[Voiceover] Let g be a function defined for all real numbers. Also, let g prime, the derivative of g, be defined as g prime of x is equal to x squared over x minus two to the third power. On which intervals is g increasing? Well, at first you might say,…
Bitcoin Is About To Snap
What’s up Grandma! It’s guys here, so we gotta bring attention to a topic that, in my opinion, is not getting enough recognition. Which I think is surprising because this has the potential to completely change the trajectory in terms of how we transact mo…
The Articles of Confederation | Period 3: 1754-1800 | AP US History | Khan Academy
Hey, this is Kim, and I’m here with Leah, KH Academy’s US government and politics fellow. Welcome, Leah! How’s it going? All right, so we’re talking about the Articles of Confederation, which I think many people don’t realize was the first Constitution o…