yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Extending geometric sequences | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

So we're told that the first four terms of a geometric sequence are given. They give us the first four terms. They say, what is the fifth term in the sequence?

And like always, pause the video and see if you can come up with the fifth term. Well, all we have to remind ourselves is for a geometric sequence, for a geometric sequence, each successive term is the previous term multiplied by some number, and that number we call the common ratio.

So let's think about it. To go from negative 1/32, that's the first term, to 1/8, what do we have to multiply by? What do we have to multiply by? Let's see, we're going to multiply. It's going to be multiplied by a negative since we went from a negative to a positive. So we're going to multiply. We're going to multiply by negative, and then it's going to be a 1 over—let's see—to go from a 32 to an 8. Actually, it's not going to be a 1 over; it's going to be—this is 4 times as large as that. It's going to be negative 4.

Negative 1/32 times negative 4 is positive 1/8. Just to make that clear, negative 1/32 times negative 4. That's the same thing as times negative 4 over 1. It's going to be positive—negative times a negative is a positive—positive 4 over 32, which is equal to 1/8.

And let's see if that holds up. So to go from 1/8 to negative 1/2, we once again would multiply by negative 4. Negative 4 times 1/8 is negative 4/8, which is negative 1/2.

And so then we multiply by negative 4 again. So let me make it clear. We're multiplying by negative 4 each time. You multiply by negative 4 again, you get to positive 2. Because negative 4—negative negative 4 over negative 2—you can view it that way—is positive 2.

And so to get the fifth term in the sequence, we would multiply by negative 4 again. And so 2 times negative 4 is negative 8.

Negative 4 is the common ratio for this geometric sequence. But just to answer the question, what is the fifth term? It is going to be negative 8.

More Articles

View All
Flying from Japan | 19 hours flight vlog🇯🇵
Hi guys, it’s me Ruri. Today I am back with another super long travel vlog. Our flight is going to be around 19 hours, and we’re gonna fly from Japan to the UK first, and from there we’re gonna fly back to Turkey. This is the Haneda Airport. If you watche…
State checks on the judicial branch | US government and civics | Khan Academy
In previous videos, we had talked about the 1896 Supreme Court case Plessy versus Ferguson, which is a good one to know in general if you’re studying United States history and/or United States government. But this is where we got the principle of separate…
Putting a Species on the Map | Explorers Fest
[Applause] Thank you. Last time I was here in DC, I had the chance to be on stage. You know what I did? I came flying just like that. Many people have been asking me, do you still fly? The answer is yes, I fly every day, and I enjoy it. And the hope today…
TAOISM | The Philosophy Of Flow
That which offers no resistance, overcomes the hardest substances. That which offers no resistance can enter where there is no space. Few in the world can comprehend the teaching without words, or understand the value of non-action. — Lao Tzu There’s no…
The Placebo Effect: Mind Over Matter
The mind can hold tremendous power over our bodies. People walking over burning coal with no sign of pain, seemingly average people achieving feats of superhuman strength, or even just the everyday person overcoming tremendous adversity. We’ve all heard t…
Worked example: over- and under-estimation of Riemann sums | AP Calculus AB | Khan Academy
The continuous function ( g ) is graphed. We’re interested in the area under the curve between ( x ) equals negative seven and ( x ) equals seven, and we’re considering using Riemann sums to approximate it. So, this is the area that we’re thinking about i…