yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Buffer range | Acids and bases | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

Buffers consist of a significant amount of a weak acid, which we will represent as H A, and the conjugate base to the weak acid, which we will represent as A minus. Buffer solutions resist large changes in pH; however, buffers are only effective over a certain range of pH values.

We are going to use the Henderson-Hasselbalch equation to find the effective pH range of a buffer. Looking at the Henderson-Hasselbalch equation, the pH of the buffer solution is equal to the pKa of the weak acid, which would be H A, plus the log of the concentration of the conjugate base divided by the concentration of the weak acid.

It's this ratio of the concentration of the conjugate base to the concentration of the weak acid that determines if a buffer is effective or not. Buffer solutions are most effective at resisting a change in pH in either direction when the concentration of the weak acid is equal to the concentration of the conjugate base. When the concentrations are equal to each other, the ratio is equal to 1, and the log of 1 is equal to zero.

Therefore, when the concentrations are equal to each other, the pH of the buffer solution is equal to the pKa of the weak acid plus zero. So we could just say that the pH is equal to the pKa when the concentration of the weak acid is equal to the concentration of the conjugate base.

We usually try to choose a buffer with a weak acid that has a pKa value close to the desired pH of the solution. Buffers are effective at resisting large changes in pH when the pH is approximately equal to the pKa of the weak acid. However, if the concentration of one component of a buffer is more than 10 times the concentration of the other component, buffers are not effective at resisting large changes to pH.

Therefore, to find the effective pH range, we are going to use the Henderson-Hasselbalch equation to calculate the pH when the concentration of the conjugate base is 10 times the concentration of the weak acid and also to calculate the pH when the concentration of the weak acid is 10 times the concentration of the conjugate base. Doing these two calculations gives us the upper and lower limits of the effective pH range.

So, let's calculate the pH of the buffer solution when the concentration of the conjugate base is 10 times the concentration of the weak acid. Looking at the Henderson-Hasselbalch equation, if the concentration of the conjugate base is 10 times the concentration of the weak acid, the ratio is equal to 10 over 1, and the log of 10 is equal to 1.

Therefore, the pH of the buffer solution is equal to the pKa value of the weak acid plus one. This value for the pH represents the upper limit of the effective pH range. Next, let's calculate the pH of the buffer solution when the concentration of weak acid is 10 times the concentration of the conjugate base.

Looking at the Henderson-Hasselbalch equation, if the concentration of H A is 10 times the concentration of A minus, the ratio is equal to 1 over 10, and the log of 1 over 10 is equal to negative one. Therefore, the pH of the buffer solution is equal to the pKa value of the weak acid minus one.

This value for the pH represents the lower limit of the effective pH range. By the calculations that we've just done, we've seen that the effective pH range of a buffer is plus or minus 1 of the pKa value of the weak acid.

Let's use this concept of an effective pH range to choose a buffer solution. Let's say we want to buffer a solution at a pH of 9.00 at 25 degrees Celsius. Suppose that we have two choices: we could either choose an acetic acid/acetate buffer or we could choose an ammonium/ammonia buffer.

Because the effective pH range of a buffer is plus or minus 1 the pKa value of the weak acid, we don't want to choose the acetic acid/acetate buffer solution because, at 25 degrees Celsius, the pKa value for acetic acid is equal to 4.74. Therefore, this buffer would only be effective at a range of plus or minus 1 from 4.74, so about 3.74 to approximately 5.74.

The ammonium cation has a pKa value equal to 9.25 at 25 degrees Celsius. Therefore, the ammonium/ammonia buffer is effective plus or minus 1 of this pKa value, so approximately 8.25 to 10.25. Since our pH of 9 falls within that range, we would choose the ammonium/ammonia buffer.

More Articles

View All
My concern with the current Altcoin market (be careful)
What’s up you guys? It’s Graham here. So, I felt like this is a topic worth addressing, and we gotta have to sit down and talk about altcoins and my concern with the market as a whole. But before we get into it, gotta pay compliments to the shirt. I hope …
3d vector field example | Multivariable calculus | Khan Academy
So in the last video, I talked about three-dimensional vector fields, and I finished things off with this sort of identity function example where at an input point (X, Y, Z), the output vector is also (X, Y, Z). Here, I want to go through a slightly more …
2021 YC Top Companies on Their Startup Journey
I’ll start with the introduction. “Why don’t you introduce yourself and your company?” “My name is Nikki Gulimas. I’m the co-founder and CEO of Nova Credit.” “My name is Olu Bengala. I’m the co-founder and CEO of Flora Weave.” “My name is Amir Nathu, …
It’s Over: The Middle Class Is Disappearing
What’s me guys? It’s Graham here. Apparently, the middle class is quickly disappearing at an alarming rate. In fact, the situation is getting so dire that less than a year ago, Fortune stated that the middle class is bracing for its next financial blow. A…
Meet The $700,000,000 Man Who Lost Everything | Dave Ramsey
I’m an entrepreneur. This is going to work. It didn’t. It didn’t. It didn’t. It didn’t. It didn’t. And then you put something out there that you kind of thought, “Yeah,” and then it goes big and you got, “Crap, I don’t know nothing.” You know, so you just…
Conditional probability tree diagram example | Probability | AP Statistics | Khan Academy
Accompany screens job applicants for illegal drug use at a certain stage in their hiring process. The specific test they use has a false positive rate of 2% and a false negative rate of 1%. Suppose that 5% of all their applicants are actually using illega…