yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Buffer range | Acids and bases | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

Buffers consist of a significant amount of a weak acid, which we will represent as H A, and the conjugate base to the weak acid, which we will represent as A minus. Buffer solutions resist large changes in pH; however, buffers are only effective over a certain range of pH values.

We are going to use the Henderson-Hasselbalch equation to find the effective pH range of a buffer. Looking at the Henderson-Hasselbalch equation, the pH of the buffer solution is equal to the pKa of the weak acid, which would be H A, plus the log of the concentration of the conjugate base divided by the concentration of the weak acid.

It's this ratio of the concentration of the conjugate base to the concentration of the weak acid that determines if a buffer is effective or not. Buffer solutions are most effective at resisting a change in pH in either direction when the concentration of the weak acid is equal to the concentration of the conjugate base. When the concentrations are equal to each other, the ratio is equal to 1, and the log of 1 is equal to zero.

Therefore, when the concentrations are equal to each other, the pH of the buffer solution is equal to the pKa of the weak acid plus zero. So we could just say that the pH is equal to the pKa when the concentration of the weak acid is equal to the concentration of the conjugate base.

We usually try to choose a buffer with a weak acid that has a pKa value close to the desired pH of the solution. Buffers are effective at resisting large changes in pH when the pH is approximately equal to the pKa of the weak acid. However, if the concentration of one component of a buffer is more than 10 times the concentration of the other component, buffers are not effective at resisting large changes to pH.

Therefore, to find the effective pH range, we are going to use the Henderson-Hasselbalch equation to calculate the pH when the concentration of the conjugate base is 10 times the concentration of the weak acid and also to calculate the pH when the concentration of the weak acid is 10 times the concentration of the conjugate base. Doing these two calculations gives us the upper and lower limits of the effective pH range.

So, let's calculate the pH of the buffer solution when the concentration of the conjugate base is 10 times the concentration of the weak acid. Looking at the Henderson-Hasselbalch equation, if the concentration of the conjugate base is 10 times the concentration of the weak acid, the ratio is equal to 10 over 1, and the log of 10 is equal to 1.

Therefore, the pH of the buffer solution is equal to the pKa value of the weak acid plus one. This value for the pH represents the upper limit of the effective pH range. Next, let's calculate the pH of the buffer solution when the concentration of weak acid is 10 times the concentration of the conjugate base.

Looking at the Henderson-Hasselbalch equation, if the concentration of H A is 10 times the concentration of A minus, the ratio is equal to 1 over 10, and the log of 1 over 10 is equal to negative one. Therefore, the pH of the buffer solution is equal to the pKa value of the weak acid minus one.

This value for the pH represents the lower limit of the effective pH range. By the calculations that we've just done, we've seen that the effective pH range of a buffer is plus or minus 1 of the pKa value of the weak acid.

Let's use this concept of an effective pH range to choose a buffer solution. Let's say we want to buffer a solution at a pH of 9.00 at 25 degrees Celsius. Suppose that we have two choices: we could either choose an acetic acid/acetate buffer or we could choose an ammonium/ammonia buffer.

Because the effective pH range of a buffer is plus or minus 1 the pKa value of the weak acid, we don't want to choose the acetic acid/acetate buffer solution because, at 25 degrees Celsius, the pKa value for acetic acid is equal to 4.74. Therefore, this buffer would only be effective at a range of plus or minus 1 from 4.74, so about 3.74 to approximately 5.74.

The ammonium cation has a pKa value equal to 9.25 at 25 degrees Celsius. Therefore, the ammonium/ammonia buffer is effective plus or minus 1 of this pKa value, so approximately 8.25 to 10.25. Since our pH of 9 falls within that range, we would choose the ammonium/ammonia buffer.

More Articles

View All
Michael Burry just sold all his stocks and the reason why is terrifying
So Michael Burry just did something unthinkable in the world of investing: he sold his entire portfolio of stocks. Every single last one! Now, this action is so unconventional that it deserves your attention. As a professional investor working at an inves…
Calculating kinetic energy | Modeling energy | High school physics | Khan Academy
In this video, we’re going to talk about kinetic energy, and we’re also going to think about how to calculate it. So, you can already imagine, based on the word “kinetic,” which is referring to motion, that this is the energy that an object has by virtue …
Jorge Paulo Lemann on building a more equitable future in Brazil | Homeroom with Sal
Support all of you in other ways with daily class schedules to kind of approximate keeping the learning going on during the closures. Webinars for teachers and parents, and also this home room is really just a way to stay connected, talk to interesting pe…
More on Normal force (shoe on floor) | Physics | Khan Academy
Check out this fine looking sneaker right here. We’re going to use this shoe to illustrate some more challenging normal force problems, and we’re going to take this as an opportunity to discuss a lot of the misconceptions that people have about the normal…
Safari Live - Day 272 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon everybody and welcome to a stormy, blustery, windy Masai Mara. We’ve had a massive storm that has just blown…
shower thoughts that make me question reality..
What if your entire life is flashing in front of your eyes, but you’re already dead? If you’re not dead but alive, everything is trying to kill you constantly. Your stomach is constantly trying to kill you; feeding it makes it stop. You need to drink as w…