yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

There's Plenty of Drinking Water on Mars | Stephen Petranek | Big Think


2m read
·Nov 4, 2024

Processing might take a few minutes. Refresh later.

There is a lot of water on Mars, and there once was a lot of surface flowing water. You don’t see it because most of it is mixed with the soil, which we call regolith on Mars. So the Martian soil can be anywhere from as little as one percent in some very dry, deserty-like areas to as much as 60 percent water.

One strategy for getting water when you’re on Mars is to break up the regolith, which would take something like a jackhammer because it’s very cold; it’s very frozen. If you can imagine making a frozen brick or a chunk of ice that’s mostly soil and maybe half water and half soil, that’s what you would be dealing with. So you need to break this up, put it in an oven. As it heats up, it turns to steam. You run it through a distillation tube, and you have pure drinking water that comes out the other end.

There is a much easier way to get water on Mars. In this country, we have developed industrial dehumidifiers. They’re very simple machines that simply blow the air in a room or a building across a mineral called zeolite. Zeolite is very common on Earth; it’s very common on Mars. And zeolite is kind of like a sponge. It absorbs water like crazy and takes the humidity right out of the air. Then you squeeze it, and out comes the water.

Scientists working for NASA at the University of Washington, as long ago as in the late 1990s, developed a machine called WAVAR that very efficiently sucks water out of the Martian atmosphere. So water is not nearly as significant a problem as it appears to be.

We also know from orbiters around Mars, and right now there are five satellites orbiting Mars. We know from photographs that these orbiters have taken and geological studies that they’ve done that there is frozen ice on the surface of Mars. Now, there’s tons of it at the poles. Some of it is overladen with frozen—or mixed with frozen carbon dioxide. But in many craters on Mars, there apparently are sheets of frozen water.

So if early astronauts or early voyagers to Mars were to land near one of those sheets of ice on a crater, they would have all the water they need.

More Articles

View All
7 Principles for AI in Education: Part 1 of 2
So hello everyone, I’m Kristen Deso. I’m the chief learning officer at KH Academy. I want to lay the groundwork a little bit for why we’re here. The first part is because I’m sure all of you are bombarded by the messages around artificial intelligence. W…
What The Ultimate Study On Happiness Reveals
This video is about one of the most important questions: what leads to a happy life? Realistically, money. Being wealthy is definitely a big aspect of it. To save a lot of money. Money. Money. Earning money. It’s very important to be rich. It’s ea…
What staying up all night does to your brain - Anna Rothschild
You’re just one Roman Empire history final away from a relaxing spring break. But you still have so much to study! So you decide to follow in the footsteps of many students before you and pull an all-nighter. When you stay up all night, you’re fighting a…
Ancient Greece 101 | National Geographic
[Narrator] Art, philosophy, democracy, and heroes. These are just a few achievements of the legendary civilization known as ancient Greece. Ancient Greece was born on the shores of the Aegean Sea about 4,000 years ago. In over a millennium, it expanded to…
It Started: The Worst Market Collapse In 50 Years | Michael Burry
What’s up, Graham? It’s guys here, and it’s official: the stock market makes absolutely no sense. Despite weak earnings, a recession that’s all but confirmed, and JP Morgan’s recent warning that the market could fall another 20%, prices have begun to do t…
Initial value & common ratio of exponential functions | High School Math | Khan Academy
So let’s think about a function. I’ll just give an example: let’s say h of n is equal to ( \frac{1}{14} \times 2^n ). So first of all, you might notice something interesting here: we have the variable, the input into our function, it’s in the exponent. A…