yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

🦾 такой ли безобидный сахарозаменитель ксилит? #новостинауки #наука


less than 1m read
·Nov 3, 2024

Проблема ожирения заставляет производителей ряда продуктов убирать сахар. Подсластителей становится всё больше и больше, в том числе и кселита, пятиуглеродного сахарного спирта, который можно встретить в жвачках, в конфетах, зубной пасте и так далее.

Аспартам вот недавно отнесли к категории потенциально канцерогенных. Видимо, дошла очередь и до проверок кселита. И действительно, он, когда присутствует в организме в повышенных концентрациях, влияет на сердечно-сосудистую систему.

Эксперименты проводились на грызунах и на людях-добровольцах. Влияние оказалось негативным. На длинных дистанциях ксилит воздействовал на тромбоциты, повышая в течение 3 лет риски тромбоза, а как следствие — инсультов и инфарктов миокарда.

Уровни риска значительные, настолько, до полутора раз, чтобы рекомендовать регулирующим органам ограничивать использование кселита.

More Articles

View All
Are You Lightest In The Morning?
[Applause] So recently a friend of mine says to me, “Derek, you know you’re heaviest at night before you go to bed and lightest in the morning when you wake up.” Okay, but that doesn’t really seem to make sense. “Of course it does. Overnight, you’re not…
Nowruz and the Night Sky | Podcast | Overheard at National Geographic
[Music] At the age of around 13, I managed to borrow a telescope from a neighbor. I was trying to see some details of the moon, and as soon as I did the first look through this telescope, I think my whole life changed. Bobak Tafrishi is something of a noc…
#shorts I Respect Ideas
It’s fair to criticize. I have no problem. I’m certainly an open critic, but—I’ve been very critical of you. This banking policy of late, I’m a real critic because I don’t agree with it. But I’m just one voice. You can agree with me; you don’t have to. I…
Integrating power series | Series | AP Calculus BC | Khan Academy
So we’re told that ( f(x) ) is equal to the infinite series we’re going from ( n = 1 ) to infinity of ( \frac{n + 1}{4^{n + 1}} x^n ). What we want to figure out is what is the definite integral from 0 to 1 of this ( f(x) ). And like always, if you feel i…
Power dissipation in resistors in series versus in parallel
A student builds a circuit with a battery and two light bulbs in series. Then the student builds a second circuit with two light bulbs in parallel. Which battery runs out of power first? Assume all bulbs have equal resistance. Assume both batteries have …
How to Operate with Keith Rabois (How to Start a Startup 2014: Lecture 14)
Um, so I’m going to talk about how to operate. I’ve watched some of the prior classes, and I’m going to assume that you’ve already sort of hired a bunch of relentlessly resourceful people, that you built a product at least some people love, that you prob…