yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Estimating limits from tables | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The function g is defined over the real numbers. This table gives select values of g. What is a reasonable estimate for the limit as x approaches 5 of g of x? So pause this video, look at this table. It gives us the x values as we approach five from values less than five and as we approach five from values greater than five. It even tells us what g of x is at x equals five. And so given that, what is a reasonable estimate for this limit?

All right, now let's work through this together. So let's think about what g of x seems to be approaching as x approaches five from values less than five. Let's see, at four is it 3.374, at 4.9 it's a little higher, it's at 3.5. At 4.99 is it 3.66? At 4.999, so very close to five, we're only a thousandth away, we're at 3.68. But then at five, all of a sudden, it looks like we're kind of jumping to 6.37.

And once again, I'm making an inference here; I don't, these are just sample points of this function. We don't know exactly what the function is. But then if we approach 5 from values greater than 5, at 6 we're at 3.97, at 5.1 we're at 3.84, at 5.01 we're at 3.7, and at 5.001, we are at 3.68. So a thousandth below five and a thousandth above five, we're at 3.68. But then at five, also at 6.37.

So my most reasonable estimate would be, well, it looks like we are approaching 3.68 when we are approaching from values less than 5 and we're approaching 3.68 from values as we approach 5 from values greater than 5. It doesn't matter that the value of 5 is 6.37; the limit would be 3.68. A reasonable estimate for the limit would be 3.68.

And this is probably the most tempting distractor here, because if you were to just substitute 5, if you're, what is g of 5, it tells us 6.37. But the limit does not have to be what the actual function equals at that point. Let me draw what this might look like.

So an example of this. So if this is 5 right over here, at the point 5, the value of my function is 6.37. So let's say that this right over here is 6.37. So that's the value of my function right over there, so 6.37. But as we approach five, so that's four, actually let me spread out a little bit. This obviously is not drawing to scale, but as we approach five, so if that's 6.37, then at 4, 3.37 is about here and it looks like it's approaching 3.68.

So 3.68—actually, let me draw that—3.68 is going to be roughly that. So the graph might look something like this. We could infer it looks like it's doing something like this, where it's approaching 3.68 from values less than 5 and values greater than 5. But right at 5, our value is 6.37.

I don't know for sure if this is what the graph looks like; once again, we're just getting some sample points. But this would be a reasonable inference. And so you can see our limit; we are approaching 3.68 even though the value of the function is something different.

More Articles

View All
Comparing unit fractions
So which of the following numbers is a greater: one third or one fifth? Pause this video and try to answer that all right. Now let’s think about this together, and the way that I can best think about it is by visualizing them. So let’s imagine a hole. So…
The Fascinating Lives of Bleeding Heart Monkeys (Part 1) | Nat Geo Live
So National Geographic asked us here tonight to tell you about a day in the life of gelada monkeys and what it’s like to live alongside them. For the past decade, the vet and I have spent years living alongside this species in a unique kind of alpine out-…
Slinky Drop Answer
Well, this is going to be really tough to see. So how are we going to actually determine what the right answer is? Uh, if I were to drop it now, it would happen so fast you wouldn’t really see clearly what’s happening. So I’ve brought along my slow motion…
He Risked Death as First American to Explore Africa's Deepest Parts | National Geographic
We have to go back to who William Stamps Cherry was at the age of 20. He does head out for Africa against everybody’s advice, who said, “You’re going to die over there.” He went into Africa in 1889 and went further in the Congo than any other white man ha…
Buddha - Be Aware, Become Free
In The Dhammapada, Buddha says, “the monk who delights in awareness, seeing the danger in unawareness, not liable to fall back, is close to [Nirvana].” So Buddha is saying that awareness leads to freedom from suffering, and unawareness leads to suffering.…
Bullet Block Explained!
In my last video, we performed an experiment in which two identical wood blocks were shot with the same rifle, one through the center of mass and the other one slightly off to one side. Now, if you haven’t seen that video yet, then click here now and go a…