yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually assessing standard deviation | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Each dot plot below represents a different set of data. We see that here. Order the dot plots from largest standard deviation (top) to smallest standard deviation (bottom). So pause this video and see if you can do that, or at least if you could rank these from largest standard deviation to smallest standard deviation.

All right, now let's work through this together. I'm doing this on Khan Academy, where I can move these around to order them, but let's just remind ourselves what the standard deviation is or how we can perceive it. You could view the standard deviation as a measure of the typical distance from each of the data points to the mean. So the largest standard deviation, which you want to put on top, would be the one where typically our data points are further from the mean.

Our smallest standard deviation would be the ones where it feels like, on average, our data points are closer to the mean. In all of these examples, our mean looks to be right in the center, right between 50 and 100, so right around 75. So it's really about how spread apart they are from that.

If you look at this first one, it has these two data points, one on the left and one on the right, that are pretty far. Then you have these two that are a little bit closer, and then these two that are inside this one right over here. To get from this top one to this middle one, you essentially are taking this data point and making it go further and taking this data point and making it go further. So this one is going to have a higher standard deviation than that one.

Let me put it just like that. I just want to make it very clear: keep track of what's the difference between these two things. Here you have this data point and this data point that was closer in, and then if you move it further, that's going to make your typical distance from the middle more, which is exactly what happened there.

Now, what about this one? Well, this one is starting here and then taking this point and taking this point and moving it closer. So that would make our typical distance from the middle, from the mean, shorter. This would have the smallest standard deviation, and this would have the largest.

Let's do another example. Same idea: order the dot plots from largest standard deviation on the top to smallest standard deviation on the bottom. Pause this video and see if you can figure that out.

So this is interesting because these all have different means. Just eyeballing it, the mean for this first one is right around here. The mean for the second one is right around here at around 10, and the mean for the third one looks like the same mean as this top one. So pause this video. How would you order them?

All right, so just eyeballing it, this middle one right over here, your typical data point seems furthest from the mean. You definitely have, if the mean is here, these data points that are quite far from that mean, and even these data points are at least as far as any of the data points that we have in the top or the bottom one. So I would say this has the largest standard deviation.

If I were to compare between these two, if you think about how you would get the difference between these two, it is if you took this data point and moved it and you moved it to the mean. If you took this data point and you moved it to the mean, you would get this third situation. In this third situation, you have the fewest data points that are sitting away from the mean relative to this one.

So I actually like this ordering: that this top one has a larger standard deviation, and this bottom one has the smallest standard deviation.

More Articles

View All
Valid discrete probability distribution examples | Random variables | AP Statistics | Khan Academy
Anthony Denoon is analyzing his basketball statistics. The following table shows a probability model for the result from his next two free-throws, and so it has various outcomes of those two free-throws and then the corresponding probability: missing both…
Buffer capacity | Acids and bases | AP Chemistry | Khan Academy
Buffer capacity refers to the amount of acid or base a buffer can neutralize before the pH changes by a large amount. An increased buffer capacity means an increased amount of acid or base neutralized before the pH changes dramatically. Let’s compare two…
Proof: Parallel lines divide triangle sides proportionally | Similarity | Geometry | Khan Academy
We’re asked to prove that if a line is parallel to one side of a triangle, then it divides the other two sides proportionately. So pause this video and see if you can do that, and you might want to leverage this diagram. Alright, so let’s work through th…
BlackRock: the Company That Controls* the World's Governments
You wake up to the sound of the alarm on your iPhone, and annoyed that you couldn’t get more sleep, you grudgingly unlock your phone to see what’s going on in the world. There’s an email from Amazon telling you that your package has been delivered, so you…
Save Your Startup During an Economic Downturn
I remember we had this meeting, um, with a lot of our employees, and we were like, “Look, we got three options: we can die in two months, we can try to get to break even, or we can try to get this thing profitable.” Hello, this is Michael Seibel with Dal…
Ask Sal Anything! Homeroom - Tuesday, September 22
Hi everyone! Sal here. I was enjoying the view outside when you caught me. Uh, welcome to today’s homeroom live stream! Uh, today we’re going to have just an “ask me anything.” So, uh, if you already have some questions, feel free to put them into the me…