yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Interpreting potential energy curves of diatomic molecules | Khan Academy


4m read
·Nov 10, 2024

In a previous video, we began to think about potential energy as a function of internuclear distance for diatomic molecules. What do I mean by diatomic molecules? Well, we looked at molecular hydrogen, which is just H₂, which is just two hydrogens covalently bonded to each other.

At standard temperature and pressure, the distance between the two nuclei would be based on where there is the lowest potential energy. If you were to squeeze them together, you would have to put energy into the system and have a higher potential energy. Or if you were to pull them apart, you would have to put energy into the system and have a higher potential energy.

What I want to do in this video is do a little bit of a worked example. Over here, I have three potential energies as a function of internuclear distance graphs, and what I'm going to tell you is one of these is molecular hydrogen, one of these is molecular nitrogen or diatomic nitrogen (N₂), and one of these is diatomic oxygen (O₂).

What I want you to think about—pause this video—is which graph is the potential energy as a function of internuclear distance for each of these diatomic molecules. I'll give you a hint: look at the low point in potential energy. The low point in potential energy is what you would typically observe that diatomic molecules' internuclear distance to be at standard temperature and pressure.

This distance, right over here, is going to be a function of two things. It's going to be a function of how small the atoms actually are, how small their radii are. Smaller atoms, in general, have a shorter stable internuclear distance. But the other thing to think about is the bond order between these atoms.

I'll give you a little bit of a hint: diatomic hydrogen has just a single covalent bond, for diatomic nitrogen, it is a triple bond, and for diatomic oxygen, it is a double bond. The higher order of the bond will also bring the two atoms closer together, and it also makes it have a higher bond energy—the energy required to separate the atoms.

Remember, we talked about in the previous video, this right over here is the bond energy. So with that said, pause the video and try to figure it out: which of these is the graph of H₂, which is N₂, and which is O₂?

Let's first just think about it in terms of bond energy. If you look at it, the single bond, double bond, triple bond, here you would expect the highest order bond to have the highest bond energy. The highest bond energy is this salmon-colored one right over here. So just based on that, I would say that this is a good candidate for N₂.

This one right over here looks like diatomic nitrogen to me. Then the next highest bond energy, if you look at it carefully, looks like this purple one right over here. So just based on bond order, I would say this is a good candidate for O₂. And then the lowest bond energy is this one right over here. So just based on the bond order here (it's just a single covalent bond), this looks like a good candidate for diatomic hydrogen.

Let's also think about the radii of these atoms. If we get a periodic table of elements here, we can see that hydrogen only has one electron in that first shell, and so it's going to be the smallest. So that makes sense over here that your distance where you have the lowest potential energy is shortest for the diatomic molecule that's made up of the smallest atoms.

But then when you look at the other two, something interesting happens. Remember, your radius for an atom increases as you go down a column, but as you go to the right on a row, your radius decreases because you're adding more and more electrons to the same shell. But the Coulomb forces are increasing between that outermost shell and your nucleus.

If you just look at that trend as you go from nitrogen to oxygen, you would actually expect your atomic radius to get a little bit smaller. They're right next to each other; they might be close. But you say, okay, oxygen has one extra electron in that same second shell—maybe it's going to be a little bit smaller. So if you were to base things just on that, you'd say, all right, well, the internuclear distance for this salmon-colored one is a little bit shorter, maybe that one is oxygen and maybe this one is nitrogen.

But they would be close, and I would say in general the bond order would trump things. The bond order, because you see this high bond energy, that's the biggest giveaway that this is going to be the higher bond order diatomic molecule or N₂. They're close in atomic radius, but this is what makes all of the difference. We'll take those two nitrogen atoms and squeeze them together just a little bit more, even though they might be a little bit bigger.

So I feel pretty good with this labeling.

More Articles

View All
Ancient Egypt's Celebration of the Dead | Lost Treasures of Egypt
[cow mooing] NARRATOR: Each year after the harvest, the people of Thebes held a celebration of the dead called the “Beautiful Festival of the Valley.” They carried statues of Thebes’ three main gods in a grand procession out of Karnak temple east of the …
Why Humans Are Vanishing
Every two years, one million Japanese disappear. China’s population will halve by the end of the century; the median age in Italy has reached 48. All around the world, birth rates are crashing. Is humanity dying out? What is going on and how bad is it? F…
Surviving the Night When You’re Stuck on the Trail | Get Out: A Guide to Adventure
Hi, my name is Timmy O’Neal, and I’m a climber and a kayaker, and we’re gonna be talking about how to pull an all-nighter. People wind up being stranded in the backcountry overnight when they get lost or they underestimate the amount of time that it’s go…
How I Choose Opportunities That Align With My Brand | Behind The Velvet Rope PT 2
The social media following and the celebrity makes my deal making better because I could deliver the company’s extraordinary reductions in customer acquisition costs. You can’t run around all day long worrying what people think about you. I don’t. You sho…
Aretha Franklin Finds Her Sound | Genius: Aretha
[music playing] That was a wonderful performance. I wish I could stay. I think I sang really well. You always sing well. But we haven’t found it yet, have we? Not for lack of trying. So let’s get you back into the studio and put our heads together. Ham…
El Niño 101 | National Geographic
A natural force of nature unlike any other, El Niño is capable of unleashing a fury of climate changes and natural disasters that span from Alaska all the way to South America and beyond. What causes El Niño, and how are we affected by it? El Niño is not…