yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals intro | Accumulation and Riemann sums | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is introduce ourselves to the notion of a definite integral. With indefinite integrals and derivatives, this is really one of the pillars of calculus. As we'll see, they are all related, and we'll see that more and more in future videos. We'll also get a better appreciation for even where the notation of a definite integral comes from.

So let me draw some functions here, and we're actually going to start thinking about areas under curves. Let me draw a coordinate axes here; so that's my y-axis, this is my x-axis. Actually, I'm going to do two cases. So this is my y-axis, this is my x-axis, and let's say I have some function here. So this is f of x right over there, and let's say that this is x equals a. Let me draw a line going straight up like that, and let's say that this is x equals b, just like that.

What we want to do is concern ourselves with the area under the graph, under the graph of y is equal to f of x and above the x-axis, and between these two bounds, between x equals a and x equals b. So this area right over here, and you can already get an appreciation. We're not used to finding areas where one of the boundaries, or as we'll see in the future, many of the boundaries could actually be curves. But that's one of the powers of the definite integral and one of the powers of integral calculus.

So the notation for this area right over here would be the definite integral. We're going to have our lower bound at x equals a, so we'll write it there. We'll have our upper bound at x equals b right over there. We're taking the area under the curve of f of x, f of x, and then dx.

Now in the future, we're going to, especially once we start looking at Riemann sums, we'll get a better understanding of where this notation comes from. This actually comes from Leibniz, one of the founders of calculus. This is known as the summa symbol, but for the sake of this video, you just need to know what this represents. This right over here represents the area under f of x between x equals a and x equals b. So this value and this expression should be the same.

More Articles

View All
Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy
Let’s say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which i…
Channing Tatum Makes Fire | Running Wild With Bear Grylls
CHANNING TATUM: God, all these stones, man. Look at them. They’re just massive boulders. BEAR GRYLLS: Nope, it’s a dead end. So all of this area is endless, like, dead ends. You reach a cliff face or you reach a boulder you can’t get over, you try and go…
Marian Devotion | Explorer
For some, visions of Mary can become all-encompassing. Terry Cola Francesco was working as a landscaper in Birmingham, Alabama, but he wanted something more in life. In 1986, on a trip to Međugorje, he found it. The visionaries’ messages struck him as the…
Sun 101 | National Geographic
While billions of stars are scattered throughout the universe, the one at the center of our solar system plays a special role for us here on Earth. Our Sun formed about 4.5 billion years ago in the Milky Way galaxy’s Orion’s fur. It was born when a cloud …
TIL: Female Lions Are Attracted to Black Manes | Today I Learned
[Music] M. If a male has a really good-looking mane, females go crazy over [Music]. Lions actually have to be in really good physical condition to produce that dark hair on the mane, and males that are not quite so healthy produce a blonder [Music] mane. …
How to avoid phishing attempts. However it’s spelled, it’s bad news
Hi, everyone. Sal Khan here from Khan Academy, and I’m here with Grace Hoyt, head of Account Security Partnerships at Google to talk a little bit about online safety. Welcome, Grace. Thanks for having me, Sal. So let’s just start at the basics. What is …