yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals intro | Accumulation and Riemann sums | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is introduce ourselves to the notion of a definite integral. With indefinite integrals and derivatives, this is really one of the pillars of calculus. As we'll see, they are all related, and we'll see that more and more in future videos. We'll also get a better appreciation for even where the notation of a definite integral comes from.

So let me draw some functions here, and we're actually going to start thinking about areas under curves. Let me draw a coordinate axes here; so that's my y-axis, this is my x-axis. Actually, I'm going to do two cases. So this is my y-axis, this is my x-axis, and let's say I have some function here. So this is f of x right over there, and let's say that this is x equals a. Let me draw a line going straight up like that, and let's say that this is x equals b, just like that.

What we want to do is concern ourselves with the area under the graph, under the graph of y is equal to f of x and above the x-axis, and between these two bounds, between x equals a and x equals b. So this area right over here, and you can already get an appreciation. We're not used to finding areas where one of the boundaries, or as we'll see in the future, many of the boundaries could actually be curves. But that's one of the powers of the definite integral and one of the powers of integral calculus.

So the notation for this area right over here would be the definite integral. We're going to have our lower bound at x equals a, so we'll write it there. We'll have our upper bound at x equals b right over there. We're taking the area under the curve of f of x, f of x, and then dx.

Now in the future, we're going to, especially once we start looking at Riemann sums, we'll get a better understanding of where this notation comes from. This actually comes from Leibniz, one of the founders of calculus. This is known as the summa symbol, but for the sake of this video, you just need to know what this represents. This right over here represents the area under f of x between x equals a and x equals b. So this value and this expression should be the same.

More Articles

View All
If Life Has No Meaning, Why Live? | Albert Camus & The Absurd Man
According to French-Algerian philosopher Albert Camus, our world has no ultimate meaning, but if it had, it would be impossible to know it. It’s all pretty pointless, as if the universe is nothing more than a cosmic coincidence, born without any specific …
Bill Ackman Just Made a $1 Billion Bet on This Stock...
Billionaire investor Bill Ackman runs one of the most closely filed portfolios in all finance. The Preferral he runs, named Pershing Square, has assets under management of more than 10 billion and sizable holdings in well-known companies. These companies …
Distillation curves | Intermolecular forces and properties | AP Chemistry | Khan Academy
[Instructor] In this video, we’re gonna dig a little bit deeper into distillation, and in particular, we’re gonna learn how to construct and interpret distillation curves. So let’s say we’re trying to distill roughly 50 milliliters. That is 50% methyl a…
Spaceship You
Pandemic season. This is not the first, nor will it be the last time you lock yourself down and we isolate from each other to protect ourselves and to protect those more vulnerable than ourselves. The practical effect of this isolation on you is that your…
The Disappearance of Flight 19 | Atlas of Cursed Places
This is actually the lead ship of Flight 19. Wow! The exact same plane as this is Flight 19. Yes. The final word to the men on Flight 19 have been studied and pored over. Every sentence and word analyzed, in depth, by the Navy’s after action report. And t…
Worked examples: Definite integral properties 2 | AP Calculus AB | Khan Academy
So what we’re going to do in this video is several examples where we evaluate expressions with definite integrals. Right over here we have the definite integral from -2 to 3 of 2 F of x DX plus the definite integral from 3 to 7 of 3 F of x DX. All we know…