yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals intro | Accumulation and Riemann sums | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is introduce ourselves to the notion of a definite integral. With indefinite integrals and derivatives, this is really one of the pillars of calculus. As we'll see, they are all related, and we'll see that more and more in future videos. We'll also get a better appreciation for even where the notation of a definite integral comes from.

So let me draw some functions here, and we're actually going to start thinking about areas under curves. Let me draw a coordinate axes here; so that's my y-axis, this is my x-axis. Actually, I'm going to do two cases. So this is my y-axis, this is my x-axis, and let's say I have some function here. So this is f of x right over there, and let's say that this is x equals a. Let me draw a line going straight up like that, and let's say that this is x equals b, just like that.

What we want to do is concern ourselves with the area under the graph, under the graph of y is equal to f of x and above the x-axis, and between these two bounds, between x equals a and x equals b. So this area right over here, and you can already get an appreciation. We're not used to finding areas where one of the boundaries, or as we'll see in the future, many of the boundaries could actually be curves. But that's one of the powers of the definite integral and one of the powers of integral calculus.

So the notation for this area right over here would be the definite integral. We're going to have our lower bound at x equals a, so we'll write it there. We'll have our upper bound at x equals b right over there. We're taking the area under the curve of f of x, f of x, and then dx.

Now in the future, we're going to, especially once we start looking at Riemann sums, we'll get a better understanding of where this notation comes from. This actually comes from Leibniz, one of the founders of calculus. This is known as the summa symbol, but for the sake of this video, you just need to know what this represents. This right over here represents the area under f of x between x equals a and x equals b. So this value and this expression should be the same.

More Articles

View All
Darwinism vs. Social Darwinism part 1 | US History | Khan Academy
Hey, this is Kim from KH Academy. I am the history fellow here, and I am here with Emily. Hi, I’m the biology fellow. So, Emily and I are here talking about Darwinism, and I’m interested in Darwinism because in the late 19th century, we usually call the …
EPIC NOSE PICKING and why Football RULES -- IMG! #20
Master Chief loves football, and the most confused face ever. It’s a special football episode of IMG North American football. It gives you everything a guy could want: kicks to the face, kicks to the nuts, and heads up your butt. You get to pick; you can …
National Geographic Live! - Bringing China and Africa Together to Save Elephants | Nat Geo Live
The future of the African elephant is threatened by the illegal ivory trade. People are unable to organize collective and effective conservation efforts. A way forward is to create a new social space for cross-cultural understanding and engagement. I was…
The House of Representatives in comparison to the Senate | US government and civics | Khan Academy
What we’re going to do in this video is a little bit more of a deep dive into the House of Representatives. Now, we’ve already talked about how either chamber of Congress can introduce general legislation, and if it gets approved by one chamber, it has to…
Helping to Protect the Okavango Basin | National Geographic
This is a perfect wilderness. It’s vast. Unending. When this wetland floods, it grows to around 22 thousand square kilometers, becoming visible from space. Surrounded by the Kalahari Desert—one of the driest places on earth—the Okavango Delta is a water w…
Using quotation marks in titles | Punctuation | Khan Academy
Hello grammarians! Hello, Paige! Hi, David! So, today we’re going to be talking about quotation marks. What are they and what do they do? Paige Finch: We use quotation marks to indicate when someone is speaking, right? So if we’re writing dialogue, we ca…