yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals intro | Accumulation and Riemann sums | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is introduce ourselves to the notion of a definite integral. With indefinite integrals and derivatives, this is really one of the pillars of calculus. As we'll see, they are all related, and we'll see that more and more in future videos. We'll also get a better appreciation for even where the notation of a definite integral comes from.

So let me draw some functions here, and we're actually going to start thinking about areas under curves. Let me draw a coordinate axes here; so that's my y-axis, this is my x-axis. Actually, I'm going to do two cases. So this is my y-axis, this is my x-axis, and let's say I have some function here. So this is f of x right over there, and let's say that this is x equals a. Let me draw a line going straight up like that, and let's say that this is x equals b, just like that.

What we want to do is concern ourselves with the area under the graph, under the graph of y is equal to f of x and above the x-axis, and between these two bounds, between x equals a and x equals b. So this area right over here, and you can already get an appreciation. We're not used to finding areas where one of the boundaries, or as we'll see in the future, many of the boundaries could actually be curves. But that's one of the powers of the definite integral and one of the powers of integral calculus.

So the notation for this area right over here would be the definite integral. We're going to have our lower bound at x equals a, so we'll write it there. We'll have our upper bound at x equals b right over there. We're taking the area under the curve of f of x, f of x, and then dx.

Now in the future, we're going to, especially once we start looking at Riemann sums, we'll get a better understanding of where this notation comes from. This actually comes from Leibniz, one of the founders of calculus. This is known as the summa symbol, but for the sake of this video, you just need to know what this represents. This right over here represents the area under f of x between x equals a and x equals b. So this value and this expression should be the same.

More Articles

View All
if-elif-else | Intro to CS - Python | Khan Academy
We can use an if statement to control that a particular block of code only executes when the condition evaluates to true. But what if we want to do something else only when the condition evaluates to false? Well, we can add another if statement and try an…
Awesome Atmosphere SCIENCE!
Vsauce, are you leaning back right now? Of course, you’re not. But you will be soon, because a new episode of Vsauce Leanback has just been released, and to start it, click the link at the top of this video’s description. This week’s topic is really fun.…
Warren Buffett Warns About Diversifying Your Portfolio
Hey everyone! In this video, we are going to listen to Buffett describe why he recommends serious and knowledgeable investors should ignore conventional wisdom and purposely have a concentrated portfolio of stocks. Make sure to stick around to the end be…
The Power of Persistence
Hi, my name is Maria Eldeeb. I was born in Egypt and worked on a farm until third grade. Then we came—I came with my family to the USA, and I worked. I continued working and also going to school since we had to, but working full time didn’t allow for scho…
15 Things That Make Rich People Dislike You
In your life, there are going to be a handful of times when you’re around rich people. This is your opportunity to make powerful connections with people who are affluent and influential. Their insights, network input, or sometimes even financial backing w…
Risk.
Hey, Vsauce. Michael here. When will you die? I don’t mean you specifically, I mean the mean of you all - the average Vsauce viewer. By combining World Health Organization life tables with YouTube analytics for Vsauce viewers, we can calculate that the av…