yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals intro | Accumulation and Riemann sums | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is introduce ourselves to the notion of a definite integral. With indefinite integrals and derivatives, this is really one of the pillars of calculus. As we'll see, they are all related, and we'll see that more and more in future videos. We'll also get a better appreciation for even where the notation of a definite integral comes from.

So let me draw some functions here, and we're actually going to start thinking about areas under curves. Let me draw a coordinate axes here; so that's my y-axis, this is my x-axis. Actually, I'm going to do two cases. So this is my y-axis, this is my x-axis, and let's say I have some function here. So this is f of x right over there, and let's say that this is x equals a. Let me draw a line going straight up like that, and let's say that this is x equals b, just like that.

What we want to do is concern ourselves with the area under the graph, under the graph of y is equal to f of x and above the x-axis, and between these two bounds, between x equals a and x equals b. So this area right over here, and you can already get an appreciation. We're not used to finding areas where one of the boundaries, or as we'll see in the future, many of the boundaries could actually be curves. But that's one of the powers of the definite integral and one of the powers of integral calculus.

So the notation for this area right over here would be the definite integral. We're going to have our lower bound at x equals a, so we'll write it there. We'll have our upper bound at x equals b right over there. We're taking the area under the curve of f of x, f of x, and then dx.

Now in the future, we're going to, especially once we start looking at Riemann sums, we'll get a better understanding of where this notation comes from. This actually comes from Leibniz, one of the founders of calculus. This is known as the summa symbol, but for the sake of this video, you just need to know what this represents. This right over here represents the area under f of x between x equals a and x equals b. So this value and this expression should be the same.

More Articles

View All
Tangram Paradoxes
I can take the seven pieces of a tangram and arrange them into a shape called the monk, but I can take the same seven pieces and arrange them into a monk with no feet. Wait, what? Where’d the foot go? How can these be made of the same pieces? Is it magic…
How Does a Quantum Computer Work?
A classical computer performs operations using classical bits, which can be either zero or one. Now in contrast, a quantum computer uses quantum bits or qubits. And they can be both zero and one at the same time. And it is this that gives a quantum comput…
Things You Don't Need To Be Successful
All right. So a lot of people aren’t going to agree with this list because honestly, they’re looking for excuses. But reality is, there are things you don’t really need in order to be successful. Even though it might seem that way. We know this from perso…
Exposing Greed in the Water Business | Water & Power: A California Heist
[music playing] (SINGING) God’s gonna trouble the water. “Water and Power– A California Heist” is a feature-length documentary about the politics of water in California. California officials are putting mandatory restrictions on water use in place. MAR…
How To Get Rich According To Gary Vaynerchuk
There are a million ways to make a million dollars, and in this video, we’re looking at one of them. Garyvee is described by many as a marketing wizard, and soon enough you’ll understand why. After taking over his family’s business and rebranding it into …
2015 AP Calculus AB 6c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Part C: Evaluate the second derivative of y with respect to x squared at the point on the curve where x equals negative one and y is equal to one. All right, so let’s just go to the beginning where they tell us that d y d x is equal to y over three y squ…