yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals intro | Accumulation and Riemann sums | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is introduce ourselves to the notion of a definite integral. With indefinite integrals and derivatives, this is really one of the pillars of calculus. As we'll see, they are all related, and we'll see that more and more in future videos. We'll also get a better appreciation for even where the notation of a definite integral comes from.

So let me draw some functions here, and we're actually going to start thinking about areas under curves. Let me draw a coordinate axes here; so that's my y-axis, this is my x-axis. Actually, I'm going to do two cases. So this is my y-axis, this is my x-axis, and let's say I have some function here. So this is f of x right over there, and let's say that this is x equals a. Let me draw a line going straight up like that, and let's say that this is x equals b, just like that.

What we want to do is concern ourselves with the area under the graph, under the graph of y is equal to f of x and above the x-axis, and between these two bounds, between x equals a and x equals b. So this area right over here, and you can already get an appreciation. We're not used to finding areas where one of the boundaries, or as we'll see in the future, many of the boundaries could actually be curves. But that's one of the powers of the definite integral and one of the powers of integral calculus.

So the notation for this area right over here would be the definite integral. We're going to have our lower bound at x equals a, so we'll write it there. We'll have our upper bound at x equals b right over there. We're taking the area under the curve of f of x, f of x, and then dx.

Now in the future, we're going to, especially once we start looking at Riemann sums, we'll get a better understanding of where this notation comes from. This actually comes from Leibniz, one of the founders of calculus. This is known as the summa symbol, but for the sake of this video, you just need to know what this represents. This right over here represents the area under f of x between x equals a and x equals b. So this value and this expression should be the same.

More Articles

View All
Bare/bear, allowed/aloud, advice/advise, break/brake | Frequently confused words | Usage | Grammar
Hello Grim Marians, hello a man, hello uh! Today, we’re going to be talking about four sets of frequently confused words, and the one that I want to begin with is “advice” and “advise.” How do we keep these two words straight? Well, first of all, “advice…
Warren Buffett, Chairman, Berkshire Hathaway Investment Group | Terry Leadership Speaker Series
Good morning. It certainly got quiet quickly. That surprised me. Can you hear me? Are you there? Back well for business school, you know, it doesn’t get much better than this. Having the world’s greatest investor come to our campus is quite a bore. Office…
From Summit to Subterranean: Chasing Adventure in San Antonio, Texas | National Geographic
When you’re in the cave, you’re so hyper-focused because there’s no distractions, and so for me, it’s almost meditative. [Music] I started in adventure photography with winter sports. Now I’m here in Texas to find that adventure, but underground. Hi, it…
Designing a Cruise Ship | Making the Disney Wish | Mini Episode 3
The ship needs to be all about enchantment. We take you into a world where the design idea of Enchantment will bring our shift and the stories that we tell alive. We have over 1.2 million square feet of spaces. If you have chopped the ship up and you laid…
The REAL potential of generative AI
You’ve heard of large language models like Chat GPT, Chat GPT, Chat GPT, Chat GPT. They can answer questions, write stories, and even engage in conversation. But if you want to build a business that uses this technology, you’ll need to ask yourself an imp…
Solid waste disposal| Aquatic and Terrestrial Pollution| AP Environmental science| Khan Academy
Time for a little trash talk. The United States produces more solid waste each year than any other nation, and as we make more and more trash, we’re running out of places to put it. There are two main types of solid waste: industrial solid waste and munic…