yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals intro | Accumulation and Riemann sums | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is introduce ourselves to the notion of a definite integral. With indefinite integrals and derivatives, this is really one of the pillars of calculus. As we'll see, they are all related, and we'll see that more and more in future videos. We'll also get a better appreciation for even where the notation of a definite integral comes from.

So let me draw some functions here, and we're actually going to start thinking about areas under curves. Let me draw a coordinate axes here; so that's my y-axis, this is my x-axis. Actually, I'm going to do two cases. So this is my y-axis, this is my x-axis, and let's say I have some function here. So this is f of x right over there, and let's say that this is x equals a. Let me draw a line going straight up like that, and let's say that this is x equals b, just like that.

What we want to do is concern ourselves with the area under the graph, under the graph of y is equal to f of x and above the x-axis, and between these two bounds, between x equals a and x equals b. So this area right over here, and you can already get an appreciation. We're not used to finding areas where one of the boundaries, or as we'll see in the future, many of the boundaries could actually be curves. But that's one of the powers of the definite integral and one of the powers of integral calculus.

So the notation for this area right over here would be the definite integral. We're going to have our lower bound at x equals a, so we'll write it there. We'll have our upper bound at x equals b right over there. We're taking the area under the curve of f of x, f of x, and then dx.

Now in the future, we're going to, especially once we start looking at Riemann sums, we'll get a better understanding of where this notation comes from. This actually comes from Leibniz, one of the founders of calculus. This is known as the summa symbol, but for the sake of this video, you just need to know what this represents. This right over here represents the area under f of x between x equals a and x equals b. So this value and this expression should be the same.

More Articles

View All
Microwaving Grapes Makes Plasma
Almost eight years ago, when this channel was fresh and before I had gray hairs in my beard—in fact, before I had a beard—I made a video showing that if you take a grape and cut it almost completely in half and put it in the microwave, you can make some p…
See 3 Lions Get a Brand New Home in the Wild | Short Film Showcase
[Music] Lyonne are dwindling in number in wild areas and there’s not many more landscapes left available for them to expand into. They are persecuted wherever they go. It becomes important then to look after the populations that you’ve got. Wine cereal, …
Mapping the Future of Global Civilization | Nat Geo Live
That world of political geography is not going away. But, at the same time, we are engaging in this topographical engineering. These very robust engineering systems by which we modify the planet to suit what we want it to do, what our various economic and…
8 steps to unf*** your life
Here are eight steps to un your life. Step one: cleanse thy Earthly vessel. Shower, get fresh, treat yourself with respect. Brush your teeth, wear a scent because this is it. This is the character you’re playing as, and if you fail to take care of yourse…
Invertible and noninvertibles matrices
Let me just write a general two by two matrix A. So let’s just say its elements are A, B, C, and D. Now, from previous videos, we have learned how to find the inverse of our matrix A. The formula that we went over, the inverse of our matrix A, is going to…
Unboxing my new $20,000 watch
What’s up guys? It’s Graham here. So yes, the title you read is correct. I just went and spent twenty thousand dollars to go and buy a watch. I realize that goes against pretty much everything I talk about here on the channel—saving as much money as you c…