yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Seasons | The Earth-sun-moon system | Middle school Earth and space science | Khan Academy


4m read
·Nov 10, 2024

In this video, we're gonna think about why we have seasons on Earth like summer and fall and winter and spring. Now, one theory that some folks might have is maybe it's due to the distance between the Earth and the Sun. We know that the Earth orbits the Sun. The Sun is where the great majority of the heat and the energy on the surface of the Earth comes from, and maybe it's the case that there are certain times of year when we are further from the Sun and there are other times of year when we are closer to the Sun.

Well, this doesn't actually hold up to why we have seasons. Because, first of all, when the northern hemisphere, the top half of Earth, has winter, the bottom hemisphere has summer and vice versa. So, it can't just be due to the distance of the whole planet. It also turns out that when Earth is furthest from the Sun, it is in July, which is in the middle of summer in the northern hemisphere. When we are closest to the Sun, it is actually in January, which we know tends to be our colder season in the northern hemisphere.

So, distance to the Sun does not hold up as to why we have seasons. The real reason why we have seasons is because of Earth's axial tilt. I guess you could say that, or its rotational tilt. Now, this picture shows that tilt, but before we go into it, I'd like to remind folks that this is nowhere near drawn at scale. The actual Sun has a diameter over a hundred times that of Earth. A million Earths can fit in the Sun, and the actual distance between the Earth and the Sun is over a hundred times the diameter between the Sun and Earth.

But going back to tilt, and you can see that here in this picture, Earth's north pole does not point straight up from the plane of Earth's orbit around the Sun. What do I mean by the plane of Earth's orbit around the Sun? This red circle that you see, or this ellipse that you see, if you imagine that being on a surface of a table or plane, that would be our orbital plane. We can see that the north pole does not go straight up from that, and the south pole does not go straight down.

Actually, we're looking at an angle of about 23.5 degrees, and that's the reason why we have the seasons. To understand why that is the case, let's imagine Earth when the northern hemisphere is most pointed towards the Sun, which happens in late June. So, let me draw the equator to help us visualize this a little bit.

Let's compare that to when the northern hemisphere is most pointed away from the Sun, which happens in late December. I will draw the equator again to help us visualize this. Let’s pick a similar point in the northern hemisphere, so let’s pick a point that's a little bit above the equator. Let’s say that point, and a comparable point in this scenario is going to be right over here. It’s about that same distance above the equator.

Notice in late June in the northern hemisphere, the Sun is almost directly above this white point that we're seeing here. While in this scenario, the Sun is at an angle; the surface of the Earth is more like this. So, the Sun's rays are coming at an angle. If you think about it, think about the scenario: the difference between when the Sun is directly bearing down on something versus when it is coming at an angle.

Let’s say this is a side view of two surfaces, and the surface on the right has twice the surface area. You can see the side view has twice the length, so the surface area, if you were to see it in 3D, would be twice the surface area of what we have on the left here. But if you have the same amount of Sun coming from the same direction—so here, let me just draw three sun rays here; this is just indicative—and let me draw three sun rays here.

Notice you have the same amount of energy, but here you’re hitting twice the surface area. So, the amount of energy per unit surface area is going to be half as much in this scenario where the Sun is coming at an angle versus this scenario where the sunlight is coming more directly on top of that point. Wherever you go in the northern hemisphere, the angle is less direct in the winter than it is in the summer.

Now, there's also some effects on the amount of daylight you get. For example, in the summer, when the northern hemisphere is most tilted towards the Earth at the North Pole, you're going to have constant daylight, and at the South Pole, you're going to have constant nighttime. Then the opposite happens when the northern hemisphere is pointed away.

When we think about spring and autumn, in either hemisphere, you can see that the angle of Earth's rotation does not change from that 23.5 degrees. But in spring and autumn, the northern hemisphere is not pointed to or away from the Sun; it's kind of just pointed to the side. So, in these two points, comparable points on the northern or southern hemisphere are seeing similar angles of the actual sunlight.

More Articles

View All
Transitioning from Academia to Data Science - Jake Klamka with Kevin Hale
So Kevin, for those of our listeners that don’t know who you are, what’s your deal? I’m a partner here at Y Combinator. I actually was in the second ever batch. I was in Winter 2006 and I founded a company called Wufoo, ran that for five years, and then …
Kinetic energy | Energy | Middle school physics | Khan Academy
Hello everyone! Let’s talk about kinetic energy. Now, “kinetic” might be an unfamiliar word, but it just comes from a Greek word that means “of motion.” So, kinetic energy is energy from motion. Any massive object that is in motion then has kinetic energy…
Let’s chat a bit
Me okay, so got it. How can I scream? Okay, let me announce this on my Instagram so that more people can join. Okay, let me put this here so that you guys can see me. I hope the lighting works; I know it’s not the best right now. Ow! Okay, let me put this…
House Hack: How to live FOR FREE by investing in multifamily real estate
What’s up you guys, it’s Graham here. So, as your real estate agent and real estate investor, I’m going to be sharing with you guys exactly how you can cover all of your housing expenses and essentially live for free without ever having to pay rent or com…
Local and global scope | Intro to CS - Python | Khan Academy
What do you think happens when I run this program? Does it print zero, four, or raise some kind of error? To find out, let’s explore variable scope. The scope of a variable describes the region of the program where we can access it. When we run this prog…
How To Get Rich According To Mark Cuban
There are a million ways to make a million dollars, and today we’re looking at how Mark Cuban’s done it. For those of you who live under a rock, Mark Cuban is an American serial entrepreneur, investor, one of the main sharks from Shark Tank, and he also o…