yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Pedigrees | Classical genetics | High school biology | Khan Academy


4m read
·Nov 11, 2024

What you see depicted here is known as a pedigree. A pedigree is a way of analyzing the inheritance patterns of a trait within a family, and it can be useful to understand more about that trait. Maybe to make some insights about the genetics of that trait, and it's a way to think about, well, what's happened in the past in a family. Then, maybe we can help get some probabilities or get some understanding of what might happen in the future.

But let's just break it down so that we understand all of the different parts of a pedigree. So, big picture, a circle represents a female in the family, and a square represents a male in the family.

If either the circle or the square is colored in, like we see right over here or we see right over here, that means that that person exhibits the trait. The trait that this particular pedigree is for is the trait of freckles and whether or not we're colored in. That is a phenotype, which is an observed trait. You just look at the person and say, "Do they have freckles or not?" This male right over here does not have freckles; this female right over here does have freckles; this male right over here does have freckles.

But, once again, this phenotype—that's the observed characteristic. We don't know exactly the genotype just from this, although we might be able to infer some ideas about the genotype by seeing how the phenotype pattern spreads from generation to generation.

But just going back to understanding the pedigree itself, when you have a horizontal line connecting a male and a female, it's called a marriage line, and it means that they are coupling up and they are reproducing. They don't necessarily, I guess, have to be married; it's more that they reproduce. So, this male and this female have reproduced, and then this vertical line that goes from that horizontal line—that's known as the line of descent.

So, it's going from that first generation to the second generation, and all of the people connected to that vertical line at the bottom of the vertical line—these are their children. All the people who are directly connected to this, and this is known as a sibling line. So, this person, this person, and that person—they are all brothers and sisters. You can see that in generation one, they had two daughters, one of whom exhibited freckles, and one son who had freckles.

Now these other people in generation two—these aren't children of the first generation; these are people you could say who are brought into the family. They either married into the family, or you could just say they reproduced with the children. But that's what's happening with generation two, and so you can see you have another what's known as a marriage line. But I guess it could be a coupling line, a line of descent, and then they have two daughters in this case.

So, it turns out that freckles is an autosomal dominant trait, and I will explain what that means in a second. Autosomal dominant—dominant trait—autosomal means that it is a trait associated with one of the non-sex chromosomes. We have 23 pairs of chromosomes as humans; one of those pairs determines our sex, the other ones don't determine our sex.

So, this means that freckles is associated with one of the 22 pairs of chromosomes that do not determine your sex. Dominant means that, in general, you get two versions of a gene—one from your mom and one from your father. Each of those versions of the gene for say whether or not you have freckles is known as an allele.

If a trait is autosomal dominant, that means that if you have even just one allele for that trait, then you are going to exhibit the trait. So, for example, if the alleles for freckles—if capital F is you have freckles, it's dominant, so we write it in capital. Lowercase f means that you don't have freckles.

If someone has a genotype of capital F capital F or capital F lowercase f, or I guess we could say lowercase f capital F if we wanted to think about order— which one you're getting from which parent—well then, in all of these situations, they would exhibit the phenotype of freckles.

We talk about genotype and phenotype in other videos, and of course, the only genotype in which they would not exhibit freckles would be having both of the recessive traits.

So, with this out of the way, what can we infer about the genotype of this individual right over here? This individual will sometimes be referred to as individual 1; they're in generation 1, and they're individual 2 in generation 1.

Well, we know that they exhibit freckles, so we know for sure that, since the phenotype is freckles, they are in one of these scenarios. These two—these two are frankly equivalent. So, this person, we know that they're either capital F capital F—so that would be homozygous dominant—or their capital F lowercase f, which means they are heterozygous.

Well, let's first think about the situation: if they were homozygous dominant. If they were homozygous dominant, that means to every one of her children she would give one of these alleles, and either of those are dominant. And so that would mean, if this were the case, that all of her children would get at least one dominant allele.

Well, if they all get at least one dominant allele, then all of her children would have freckles. But we're seeing a situation where all of her children do not have freckles; two of her three children had freckles, so this cannot be the case.

So, this individual right over here must be heterozygous for freckles; they must be capital F lowercase f. And what do we know about this individual right over here—the person that she coupled up with? Well, they don't exhibit the phenotype for freckles, so they must be lowercase f lowercase f.

And then, from that, you might be able to intuit a lot more about that, and we'll do that in future worked examples.

More Articles

View All
Reasoning about factors and multiples
We’re told we know that 5 times 3 is equal to 15. Yep, that’s true. So which of the following statements are also true? It says to choose two answers. So pause this video and see if you can work through that. All right, now let’s go through them one by o…
Long Distance KISSING and more! LÜT #22
Starry night socks and a gun that shoots ketchup onto your food. It’s episode 22 of LÜT. First, let’s break the ice… or let the ice do the breaking itself as a hammer. Of course, this hammer lets you open bottles. When you pour out the contents, be sure i…
Automatic stabilizers | National income and price determination | AP Macroeconomics | Khan Academy
So what we have depicted in this diagram is the business cycle that we have looked at in other videos. This horizontal axis is time; the vertical axis is real GDP. What we see in this dark blue color, you can view that as full employment output at differe…
What Are Tundras? | National Geographic
What are tundras? Tundras are among the Earth’s coldest and harshest biomes. These ecosystems are treeless regions with extreme cold and low rainfall. There are two different types of tundras: alpine and arctic. Alpine tundras occur on mountains where tr…
Did The Past Really Happen?
Hey, Vsauce. Michael here. The dog that played Toto in The Wizard of Oz was credited as Toto, but in reality, the dog’s name was Terry. And when Terry died in 1945, her owner and trainer, Carl Spitz, buried her on his ranch in Los Angeles. But in 1958, th…
Little Farms, Big Movement | Branching Out | Part 2
Today my family and I are hitting the road in search of a farm. A vertical farm is a farm, just like it sounds, that is stacked. But since I’m leading this family adventure, it’s not just gonna be your average farm. We are on the hunt to find the next gen…