yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why Blue Whales Don't Get Cancer - Peto's Paradox


5m read
·Nov 2, 2024

Cancer is a creepy and mysterious thing. In the process of trying to understand it, to get better at killing it, we discovered a biological paradox that remains unsolved to this day: Large animals seem to be immune to cancer, which doesn't make any sense. The bigger a being, the more cancer it should have. To understand why, we first need to take a look at the nature of cancer itself.

(Kurzgesagt intro music)

Kurzgesagt in a Nutshell. Our cells are protein robots made out of hundreds of millions of parts. Guided only by chemical reactions, they create and dismantle structures, sustain a metabolism to gain energy, or make almost perfect copies of themselves. We call these complex chemical reactions pathways. They are biochemical networks upon networks, intertwined and stacked on top of each other. Most of them can barely be comprehended by a single human mind and yet they functioned perfectly... Until... they don't.

With billions of trillions of reactions happening in thousands of networks over many years, the question is not if something will go wrong, but when. Tiny mistakes add up until the grandiose machinery gets corrupted. To prevent this from getting out of hand, our cells have kill switches that make them commit suicide. But these kill switches are not infallible. If they fail, a cell can turn into a cancer cell. Most of them are slain by the immune system very quickly. But this is a numbers game. Given enough time, a cell would accrue enough mistakes, slipped by unnoticed, and begin making more of itself.

All animals have to deal with this problem. In general, the cells of different animals are the same size. The cells of a mouse aren't smaller than yours. It just has fewer cells in total and a shorter lifespan. Fewer cells and a short life means a lower chance of things going wrong or cells mutating, or at least it should mean that. Humans live about 50 times longer and have 3,000 times more cells than mice, yet the rate of cancer is basically the same in humans and in mice. Even larger blue whales, with about 3,000 times more cells than humans, don't seem to get cancer at all, really.

This is PETO'S PARADOX: The baffling realization that large animals have much, much less cancer than they should. Scientists think there are two main ways of explaining the paradox: evolution and hyper tumors.

Solution one: evolve or become a blob of cancer. As multicellular beings developed 600 million years ago, animals became bigger and bigger, which added more and more cells and hence more and more chances that cells could be corrupted. So the collective had to invest in better and better cancer defenses. The ones that did not died out. But cancer doesn't just happen. It's a process that involves many individual mistakes and mutations in several specific genes within the same cell. These genes are called proto-oncogenes, and when they mutate, it's bad news.

For example, with the right mutation, a cell will lose its ability to kill itself. Another mutation and it will develop the ability to hide. Another and it will send out calls for resources. Another one and it will multiply quickly. These oncogenes have an antagonist, though; tumor suppressor genes. They prevent these critical mutations from happening or order the cell to kill itself if they decide it's beyond repair. It turns out that large animals have an increased number of them.

Because of this, elephant cells require more mutations than mice cells to develop a tumor. They are not immune but more resilient. This adaptation probably comes with a cost in some form, but researchers still aren't sure what it is. Maybe tumor suppressors make elephants age quicker later in life or slow down how quickly injuries heal. We don't know yet.

But the solution to the paradox may actually be something different.

Hypertumors. Solution 2: Hypertumors. Solution 2: Hypertumors (Yes). Solution 2: Hypertumors (Yes, really). Hypertumors are named after hyperparasites: the parasites of parasites. Hypertumors are the tumors of tumors.

Cancer can be thought of as a breakdown in cooperation. Normally, cells work together to form structures like organs, tissue, or elements of the immune system. But cancer cells are selfish and only work for their own short-term benefit. If they're successful, they form tumors; huge cancer collectives that can be very hard to kill. Making a tumor is hard work, though. Millions or billions of cancer cells multiply rapidly, which requires a lot of resources and energy.

The amount of nutrients they can steal from the body becomes the limiting factor for growth. So the tumor cells trick the body to build new blood vessels directly to the tumor, to feed the thing killing it. And here, the nature of cancer cells may become their own undoing. Cancer cells are inherently unstable and so they can continue to mutate. Some of them faster than their buddies.

If they do this for a while, at some point one of the copies of the copies of the original cancer cell might suddenly think of itself as an individual again and stop cooperating. Which means, just like the body, the original tumor suddenly becomes an enemy, fighting for the same scarce nutrients and resources. So the newly mutated cells can create a hypertumor. Instead of helping, they cut off the blood supply to their former buddies, which will starve and kill the original cancer cells. Cancer is killing cancer.

This process can repeat over and over, and this may prevent cancer from becoming a problem for a large organism. It is possible that large animals have more of these hyper tumors than we realize; they might just not become big enough to notice. Which makes sense: a two-gram tumor is 10% of a mouse's body weight, while it's less than 0.002% of a human and 0.000002% of a blue whale. All three tumors require the same number of cell divisions and have the same number of cells.

So an old blue whale might be filled with tiny cancers and just not care. There are other proposed solutions to Peto's paradox, such as different metabolic rates or different cellular architecture. But right now we just don't know. Scientists are working on the problem. Figuring out how large animals are so resilient to one of the most deadly diseases we know could open the path to new therapies and treatments.

Cancer has always been a challenge. Today, we are finally beginning to understand it, and by doing so, one day we might finally overcome it.

More Articles

View All
An Accidental Case of the Blues | Podcast | Overheard at National Geographic
So this is my first time back getting office in March, April, May, June, July, August—six months. Six months—like a lot of other places in the U.S. in the summer of 2020, our office was closed to help slow the spread of coronavirus. But in August, my prod…
How a Shark's Vision Works | When Sharks Attack
Elvin is part of a series of events puzzling investigators: nine shark attacks along the southeast Florida coast in 2017, more than double the average. With leads coming up short, some local authorities come up with their own theories for the spike. Vero …
Khan Academy Ed Talks featuring Asst. Supt. Beth Gonzalez - Thursday, Dec. 17
Hi everyone! Sal here from Khan Academy. Welcome to the Ed Talks live stream subset of the Homeroom. We have a very exciting conversation with Beth Gonzalez, Assistant Superintendent of Detroit Public Schools. So, start thinking of questions for Beth, and…
Scouting for Wildlife in Big Bend National Park | National Geographic
So it looks like we got some animal activity already. Hold on. Don’t come down any further. We’re here at probably one of the most beautiful spots that you can see in Big Bend National Park, Santa Elena Canyon. I am scouting for National Geographic right …
The TRUTH Behind Passive Income
Hey guys, welcome back to the channel! In this video, we’re going to be talking about the truth behind passive income. Because when I make a video about passive income, I love talking about passive income—it’s one of my absolute most favorite topics to ta…
Example punnet square for sex-linked recessive trait | High school biology | Khan Academy
Hemophilia is an X-linked recessive trait that affects blood clotting. If someone has hemophilia, their blood has trouble clotting. If a carrier woman and a hemophiliac man have a daughter, what is the percent chance that she, the daughter, will have hemo…