yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Integration using completing the square and the derivative of arctan(x) | Khan Academy


3m read
·Nov 11, 2024

All right, let's see if we can find the indefinite integral of ( \frac{1}{5x^2 - 30x + 65} , dx ). Pause this video and see if you can figure it out.

All right, so this is going to be an interesting one. It'll be a little bit hairy, but we're going to work through it together. So immediately, you might try multiple integration techniques and be hitting some walls. What we're going to do here is actually try to complete the square in this denominator right over here. By completing the square, we're going to get it in a form that looks like the derivative of arcTan. If that's a big hint to you, once again, pause the video and try to move forward.

All right, now let's do this together. I'm just going to try to simplify this denominator so that my coefficient on my ( x^2 ) term is a 1. I can just factor a 5 out of the denominator. If I did that, then this integral will become ( \frac{1}{5} \int \frac{1}{x^2 - 6x + 13} , dx ).

As I mentioned, I'm going to complete the square down here, so let me rewrite it. This is equal to ( \frac{1}{5} \int \frac{1}{\left( x^2 - 6x \right) + 13} , dx ). Clearly, ( x^2 - 6x ) is not a perfect square the way it's written. Let me write this ( + 13 ) out here.

Now, what could I add and then subtract if I don't want to change the value of the denominator in order to make this part a perfect square? Well, we've done this before. You take half of your coefficient here, which is (-3), and you square that. So, you want to add a 9 here, but if you add a 9, then you have to subtract a 9 as well.

This part is going to be ( (x - 3)^2 ) and then this part right over here is going to be equal to a positive 4. And of course, we don't want to forget our ( dx ) out here. Let me write it in this form. So this is going to be equal to ( \frac{1}{5} \int \frac{1}{(x - 3)^2 + 4} , dx ), which I could also write as ( + 2^2 ).

Actually, let me do it that way: ( + 2^2 dx ). Now, many of y'all might already be saying, "Hey, this looks a lot like arc tangent," but I'm going to try to simplify it even more, so it becomes very clear that it looks like arc tangent is going to be involved. I'm actually going to do some ( u ) substitution in order to do it.

The first thing I'm going to do is let's factor a ( 4 ) out of the denominator here. If we do that, then this is going to become ( \frac{1}{5} \cdot \frac{1}{4} \int \frac{1}{\frac{(x - 3)^2}{2^2}} , dx ). This is going to be a ( + 1 ), and of course, we have our ( dx ).

Then we could write this as ( \frac{1}{(x - 3)^2/2^2 + 1} ) and ( dx ). Now, the ( u ) substitution is pretty clear. I am just going to make the substitution that ( u ) is equal to ( \frac{x - 3}{2} ) or we could even say that's ( u = \frac{1}{2} x - \frac{3}{2} ). That's just ( \frac{x - 3}{2} ), and ( du ) is going to be equal to ( \frac{1}{2} dx ).

What I can do here is actually, let me start to re-engineer this integral a little bit so that we see a ( \frac{1}{2} ) here. If I make this a ( \frac{1}{2} ) and then I multiply the outside by 2, so I divide by 2 and multiply by 2 is one way to think about it. This becomes ( \frac{1}{10} ).

Doing my ( u ) substitution, I get ( \frac{1}{10} ) times the integral of, well, I have ( \frac{1}{2} dx ) right over here, which is the same thing as ( du ), so I could put the ( du ) either in the numerator or put it out here, and then I have ( \frac{1}{(u^2 + 1)} ).

Now, you might immediately recognize, what's the derivative of ( \text{arctan}(u) )? Well, that would be ( \frac{1}{u^2 + 1} ). So this is going to be equal to ( \frac{1}{10} \text{arctan}(u) ), and of course, we can't forget our big constant ( C ) because we're taking an indefinite integral.

Now, we just want to do the reverse substitution. We know that ( u ) is equal to this business right over here. So we deserve a little bit of a drum roll. This is going to be equal to ( \frac{1}{10} \text{arctan}\left( \frac{x - 3}{2} \right) + C ).

And we are done!

More Articles

View All
TIL: A Bumblebee's Buzz Is Basically a Superpower | Today I Learned
All bees buzzed, but bumblebees are one of the very few types of bees that actually take that buzzing sound and use it like a secret weapon to get pollen. In fact, what the bumblebee is doing is sonication, or buzz pollination. It’s a technique that it’s …
Tsunamis 101 | National Geographic
A tragic scene: entire cities flooded, entire towns inundated, an unending stream of floating debris—buildings, cars, people swept away in an unstoppable wave. It’s a brutal reminder tsunamis are dangerous and unpredictable. But what causes these giant w…
Surf Sisters - Ep. 2 | National Geographic Presents: IMPACT With Gal Gadot
GAL: Grief and loss are the most universal things that humans experience. Kelsey, who lost her twin sister to Covid last year, realized this truth. And instead of isolating herself in her pain, she reached out to help heal others. This is her Impact. KEL…
Leonard Susskind on Richard Feynman, the Holographic Principle, and Unanswered Questions in Physics
What I wanted to start with is you’ve often been characterized as someone with like non-traditional, you know, kind of out there ideas. Some of which have become, you know, part of the physics canon; some of which, who knows what happened. Who they all be…
The Power of Miracles | A Pastor, A Rabbi and an Imam | The Story of God
Okay, so stop me if you’ve heard this: a rabbi, a pastor, and an imam walk into a bar. Okay, so it must be barred with a diner to discuss my show “History of God” about our miracles. Are real? So the rabbi says, “Einstein said we can look at the world a…
Why You Didn't Die at Birth - Smarter Every Day 42
Hey, it’s me Destin. Welcome to Smarter Every Day. So, today’s episode’s a little bit different. I have a question about breathing. It’s pretty simple. See, our bags are packed and we’re about to go to the hospital to have our third child, and my question…