yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Cavalieri's principle in 3D | Solid geometry | High school geometry | Khan Academy


4m read
·Nov 10, 2024

So we have two cylinders here, and let's say we know that they have the exact same volume, and that makes sense because it looks like they have the same area of their base, and they have the same height.

Now, what I'm going to do is start cutting up this left cylinder here and shifting things around. So, if I just cut it in two and take that bottom cylinder, that bottom half, and shift it a bit, have I changed its volume? Well, clearly, I have not changed its volume. I still have the same volume—the combined volume of both of these half cylinders, I could say, are equal to the original cylinder.

Now, what if I were to cut it up even more? So, let me cut it up now into three. Well, once again, I still haven't changed my original volume; it's still the same volume as the original. Now, just cut it up into thirds, and if I shift them around a little bit, I'm not changing the volume.

I could keep doing that. I could cut it up into a bunch of them. Notice this still has the same original volume. I've just cut it up into a bunch of sections—a bunch. I've cut it horizontally, and now I'm just shifting things around, but that doesn't change the volume. I can do it a bunch of times. This looks like some type of poker chips or gambling chips, where I could have my original cylinder, and now I've cut it horizontally into a bunch of these, I guess you could say, chips.

But clearly, it has the same combined volume. I can shift it around a bit, but it has the same volume. And this leads us to an interesting question, and it's actually a principle known as Cavalieri's principle.

Which is if I have two figures that have the same height, and at any point along that height, the cross-sectional area is the same, then the two figures have the same volume.

Now, how does what I just say apply to what's going on here? Well, both clearly—both of these figures have the same height, and then at any point here, wherever I did the cuts at this point, at the same point on this original cylinder, well, my cross-sectional area is going to be the same because it's going to be the same area as the base in the case of this cylinder.

And so, it meets Cavalieri's principle. But Cavalieri's principle is nothing exotic; it comes straight out of common sense. I can just do more cuts like this, and you can see that I have, you could say, a more continuous-looking skewed cylinder, but this will have the same volume as our original cylinder.

When I shift it around like this, it's not changing the volume, and that's not just true for cylinders. I could do the exact same argument with some form of a prism. Once again, they have the same volume. I could cut the left one in half and shift it around; it doesn't change its volume.

I could cut it more and shift those around; it still doesn't change the volume. So, Cavalieri's principle seems to make a lot of intuitive sense here. If I have two figures that have the same height, and at any point along that height, the cross-sectional area is the same, then the figures have the same volume.

So these figures also have the same volume, and I could do it with interesting things like, say, a pyramid. These two pyramids have the same volume, and if I were to cut the left pyramid halfway along its height and shift the bottom like this, that doesn't change its volume.

And I can keep doing that with more and more cuts, and because at any point here, these figures have the same height, and at any point on that height, the cross-sectional area is the same, and so they have the same volumes. But once again, it is intuitive, and it goes all the way to the case where you have, you could view it as a continuous pyramid right over here that has been skewed.

So no matter how much you skew it, it's going to have the same volume as our original pyramid because they have the same height, and the cross-sectional area at any point in the height is going to be the same.

We can actually do this with any figure. So, these spheres have the same volume. I could cut the left one in half halfway along its height and shift it like this; clearly, I'm not changing the volume. And I could make more cuts like that, and clearly, it has still the same volume.

And this meets Cavalieri's principle because they have the same height, and the cross-section at any point along that height is going to be the same. So even though I can cut that one up and I can shift it, it looks like a different type of object—a different type of thing—but they have the same height, and the cross-sections at any point are the same area.

So we have the same volume, which is a useful thing to know—not just to know the principle, but hopefully this video helps you gain some of the intuition for why it makes intuitive sense.

More Articles

View All
Being President: Most Deadly Job in America
When the president dies, who becomes the president? Well, the Constitution says what happens next is the vice president assumes the powers and duties of the office. Simple enough, but one back-up president is none back up president. So what happens next n…
Graphical limit example
We are asked what is a reasonable estimate for the limit of g of x as x approaches 3. So, what we have here in blue, this is the graph of y is equal to g of x, and we want to think about what is the limit as x approaches 3. So, this is x equals 3 here. S…
Is this the coolest office? pt 2
Is one of my favorites here, which is “Atlas Shrugged” by Ayn Rand. She’s one of my favorite authors. Another book down here is from Tony Robbins. Moving on to this desk, it was at a secret office that one of the prime ministers used when they were in of…
Hyperinflation Explained: The 100 TRILLION Dollar Banknote
I’ve got something cool to show you guys today. Something that came in the mail just the other day. Most people wouldn’t get excited about this, but I’m actually pretty excited about it. I’ll show you a close-up. This is it! That right there is a 100 tril…
The truth behind jet lag...
The thing that everybody thinks is jet lag. People think it’s because of the time zone change; it really is not the time zone change. It’s the cabin altitude of the plane. If you ever go skiing and you go to a place that’s at 2500 or 3,000 M, and the fir…
Where will Tesla be in 10 years? (w/ @HyperChangeTV)
[Music] Hey guys! Welcome back to yet another episode of the New Money Advent Calendar. We’re still going strong, and a very special video is coming in for you guys today - another collab! This time with my mate, Gally Russell, over in Seattle at the mome…