yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Earth's fossil record | Evolution | Middle school biology | Khan Academy


4m read
·Nov 10, 2024

  • [Instructor] Life on Earth has existed for billions of years. Humans know this, not because we've been around the whole time, but instead, thanks to the discovery of fossils, which tell us about organisms that lived in the distant past. Scientists have found millions of fossils. Some, such as skeletons, document ancient organisms' anatomy or physical features, while others, such as preserved footprints, record organisms' behaviors.

Each fossil that has been found is like a piece of a giant puzzle. To see the bigger picture of the history of life on Earth, scientists have to study the many fossils and see how they all fit together in the larger puzzle. All of the fossil puzzle pieces that have been discovered, along with their relative ages, make up Earth's fossil record. The fossil record is basically a history of life on Earth as documented through fossils.

By studying the fossil record, scientists can see how life on Earth has changed over evolutionary time. The fossil record allows us to see patterns of evolutionary changes that have happened throughout Earth's history. These include an overall increase in organism complexity and diversity and the changes that have occurred along evolutionary lineages, showing us how one group of organisms could have evolved to the next. The fossil record also shows us when certain groups of organisms went extinct.

First, let's take a look at the increase in organism complexity and diversity that is seen in fossil record. Over evolutionary time, organisms have generally become more complicated. Some of the oldest known fossils are formations made by ancient colonies of cyanobacteria. These fossils provide evidence that single-celled organisms were living on Earth roughly around 3.5 billion years ago and that these organisms were relatively simple, similar to the bacteria we have today.

The fossil record then goes on to document major leaps in complexity of life on Earth, with, for example, the large tube-shape cells of Grypania spiralis and the macroscopic organisms in the Francevillian biota. According to scientists, these fossils, which are dated to be roughly from 2 billion years ago, could provide evidence of some of the earliest eukaryotic, or nucleus-containing cells, and of the earliest multicellular organisms.

Not only does the fossil record show an increase in complexity over evolutionary time, but also an increase in the diversity of life on Earth. For example, the Cambrian Explosion describes a multimillion year span of time, beginning about 539 million years ago, in which there was a huge increase in the diversity of animals on Earth. Almost all of the animal lineages we know today actually got started during this period.

All of these increases in complexity and diversity have given rise to the millions of varied organisms that live on Earth today. Next, let's take a look at the changes that can be seen along the evolutionary lineages in the Earth's fossil record. But before we do that, let's quickly look back at how scientists study fossils.

As you may recall, fossils are found in sedimentary rocks, meaning that the deeper the fossil, the older the fossil is likely to be. So based on the layers in which the fossil is found, scientists can put them in order by age. And in doing this, scientists can piece together the evolutionary steps of how one type of organism could have evolved into the next, eventually giving rise to the living organisms we see today.

To give an example of this, did you know that birds are actually direct descendants of a group of dinosaurs called theropods? It may be hard to believe, but the fossil record shows that an organism known as Archaeopteryx existed about 150 million years ago, towards the end of the Dinosaur Age, but before the appearance of modern birds. This organism in particular is interesting because it had some features unique to theropod dinosaurs, such as jaws and sharp teeth, and some features unique to birds, such as feathers.

So Archaeopteryx represents an evolutionary transition between theropod dinosaurs and birds in the fossil record. Finally, let's take a look at the patterns of extinction seen in the fossil record with the help of our extinct friend, the Triceratops. Extinction happens when a species completely dies out.

In the fossil record, extinctions show up as organisms of a certain species being present in older rock layers and then completely disappearing from the newer rock layers. For example, we only see Triceratops fossils in rock layers that are roughly 68 to 66 million years old. After this, we don't find any evidence of Triceratops fossils anywhere, and there certainly aren't any Triceratops living today. The Triceratops is an important example of extinction as they not only went extinct, but they went extinct due to a mass extinction event.

Mass extinction events happened when large-scale environmental change caused many groups of organisms to go extinct around the same time. When we see the triceratops disappear from the fossil record, we also see other types of organisms disappear too, providing evidence for the mass extinction event that led to the disappearance of all non-avian dinosaurs.

And with that, you now know what Earth's fossil record is and the various patterns it can show us. Earth's fossil record is an essential tool that scientists use to piece together the history of life on Earth. And new fossils are continuously being discovered, so the fossil record is more than just a collection of fossils.

It's a window into the mysteries of the past, and it's an ever-growing record of how life on Earth came to be what it is today.

More Articles

View All
Categorical grants, mandates, and the Commerce Clause | US government and civics | Khan Academy
In a previous video, we’ve introduced ourselves to the idea of federalism in the United States. At a high level, you could view it as a contract between a national government and the states of which it is made. But you could also view it as a layered form…
How I built 6 Income Sources That Generate $59,750 Per Month
What’s up, you guys? It’s Graham here. So, I know I’m a bit late to the party, but for those of you that don’t watch Lyon Scribner—which you should be watching, Brian Scribner—so check him out. He posted a really good video earlier this month about how h…
Pristine Seas: The Global Expedition Launches in the Pacific | National Geographic Society
The global Expedition is kicking off with our own purpose modified vessel, the MV Argo. This is the largest marine conservation effort ever attempted to protect the world’s ocean, starting in the Pacific. [Music] Life on Earth wouldn’t exist without hea…
An AI Primer with Wojciech Zaremba
Hey, today we have voice check Zaremba, and we’re going to talk about AI. So, Voiture, could you give us a quick background? I’m a founder at OpenAI, and I’m working on robotics. I think that deep learning and AI is a great application for robotics. Prio…
Example: Analyzing distribution of sum of two normally distributed random variables | Khan Academy
Shinji commutes to work, and he worries about running out of fuel. The amount of fuel he uses follows a normal distribution for each part of his commute, but the amount of fuel he uses on the way home varies more. The amounts of fuel he uses for each part…
Robot Butterflies FOR THE FUTURE - DEEP DIVE 3 - Smarter Every Day 106
Hey, it’s me Destin, welcome back to Smarter Every Day. So before we start the butterfly deep dive, the one question I get more than anything else here on Smarter Every Day is, what’s your educational background? So, I figured I’d tell you. I got my Bache…