yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What happens if you guess - Leigh Nataro


3m read
·Nov 9, 2024

Probability is an area of mathematics that is everywhere. We hear about it in weather forecasts, like there's an 80% chance of snow tomorrow. It's used in making predictions in sports, such as determining the odds for who will win the Super Bowl. Probability is also used in helping to set auto insurance rates, and it's what keeps casinos and lotteries in business.

How can probability affect you? Let's look at a simple probability problem. Does it pay to randomly guess on all 10 questions on a true/false quiz? In other words, if you were to toss a fair coin 10 times and use it to choose the answers, what is the probability you would get a perfect score? It seems simple enough. There are only two possible outcomes for each question. But with a 10-question true/false quiz, there are lots of possible ways to write down different combinations of Ts and Fs.

To understand how many different combinations, let's think about a much smaller true/false quiz with only two questions. You could answer "true true," or "false false," or one of each—first "false" then "true," or first "true" then "false." So that's four different ways to write the answers for a two-question quiz. What about a 10-question quiz? Well, this time, there are too many to count and list by hand.

In order to answer this question, we need to know the fundamental counting principle. The fundamental counting principle states that if there are A possible outcomes for one event and B possible outcomes for another event, then there are A times B ways to pair the outcomes. Clearly, this works for a two-question true/false quiz. There are two different answers you could write for the first question and two different answers you could write for the second question. That makes 2 times 2, or 4 different ways to write the answers for a two-question quiz.

Now let's consider the 10-question quiz. To do this, we just need to extend the fundamental counting principle a bit. We need to realize that there are two possible answers for each of the 10 questions. So the number of possible outcomes is 2 times 2 times 2 times 2 times 2 times 2 times 2 times 2 times 2 times 2. Or, a shorter way to say that is 2 to the 10th power, which is equal to 1,024. That means of all the ways you could write down your Ts and Fs, only one of the 1,024 ways would match the teacher's answer key perfectly.

So the probability of you getting a perfect score by guessing is only 1 out of 1,024, or about a 10th of a percent. Clearly, guessing isn't a good idea. In fact, what would be the most common score if you and all your friends were to always randomly guess at every question on a 10-question true/false quiz? Well, not everyone would get exactly 5 out of 10. But the average score, in the long run, would be 5.

In a situation like this, there are two possible outcomes: a question is right or wrong, and the probability of being right by guessing is always the same: 1/2. To find the average number you would get right by guessing, you multiply the number of questions by the probability of getting the question right. Here, that is 10 times 1/2, or 5. Hopefully, you study for quizzes, since it clearly doesn't pay to guess.

But at one point, you probably took a standardized test like the SAT, and most people have to guess on a few questions. If there are 20 questions and five possible answers for each question, what is the probability you would get all 20 right by randomly guessing? And what should you expect your score to be? Let's use the ideas from before. First, since the probability of getting a question right by guessing is 1/5, we would expect to get 1/5 of the 20 questions right. Yikes—that's only four questions!

Are you thinking that the probability of getting all 20 questions correct is pretty small? Let's find out just how small. Do you recall the fundamental counting principle that was stated before? With five possible outcomes for each question, we would multiply 5 times 5 times 5 times 5 times... Well, we would just use 5 as a factor 20 times, and 5 to the 20th power is 95 trillion, 365 billion, 431 million, 648 thousand, 625. Wow—that's huge! So the probability of getting all questions correct by randomly guessing is about 1 in 95 trillion.

More Articles

View All
Dividing whole numbers by decimals examples
Let’s say we want to figure out what eight divided by four tenths is. Pause this video and try to figure it out on your own before we do it together. All right, now one way to approach this is to think about everything in terms of tenths. And why tenths,…
Worked example: analyzing a generic food web | Middle school biology | Khan Academy
What we have here is a diagram of a food web that shows us how matter and energy are transferred between organisms in an ecosystem, but it’s a little bit abstract. They don’t tell us what these organisms are; they just say organism one, organism two, orga…
How To Live Like You're Dying
Live like you’re dying, replied one of my friends a few weeks ago after I jokingly brought up the idea of dropping everything and moving to Portugal. Amidst our conversation about work stress, we both laughed the moment off, but I went home and that one l…
Adam Brown on how to be resilient during a time of high stress and anxiety | Homeroom with Sal
Hi everyone, welcome to the daily homeroom live stream. Sal here from Khan Academy. For those of you who are wondering what this is, this live stream is something we started as soon as we saw schools starting to get closed around the world. Because we saw…
Real vs. nominal interest rate | Banking | Financial Literacy | Khan Academy
Let’s think about two different scenarios and decide which one is a better world for us. So, there is scenario one where, lucky day, we got a raise at work. We are now making 3% more than we used to make. That sounds good, but there’s a little bit of a t…
Philosophies on Failure & Learning
Life looks like this to me: um, you know, you start off and you head in a direction, and you evolve. And then you have your setbacks and the pains and so on. Ideally, you learn and you readapt, and you go on, and you have another one of those. It’s that p…