yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
How to Think Clearly | The Philosophy of Marcus Aurelius
Almost everyone thinks they are a good thinker, but in reality, few people really are. A truly great thinker is constantly growing and evolving, so take a look around you: how many people do you see moving forward in life? How many people do you see solvi…
Newton's second law calculations | Physics | Khan Academy
Let’s solve a couple of problems on Newton’s Second Law. Here’s the first one: we have an elevator which is moving up, and let’s say the mass of the elevator, including the passenger inside, is 1,000 kg. Now, if the force, the tension force of the cable,…
My Lightbulb Moment: Using Solar Energy to Feed a Village | National Geographic
Energy is life. My light bulb moment came during a trip to a remote part of China in 1994. We delivered simple solar home systems to families that had never before experienced electricity. Witnessing these families flip a switch and have electric lights c…
What Can We Learn From History? - Little Kids, Big Questions | America Inside Out
It is important to learn the history of the United States because you can learn new things about what happened then and how it is now, and how you can change the world. We learn about history so we do not repeat the mistakes that people have made in histo…
Steve Varsano meets some fans!
Willing to work for free, everybody. Same thing. I need somebody who really knows airplanes. Telling you, it takes a long time. But I’ll tell you what you should go do: you try to find an aircraft charter broker. They will teach you about the business, an…
Claire McDonnell and Jennifer Kim on Building an Inclusive Company Culture
Okay, so we’ll just like dive into this. And I’ll start by saying, you know, I’ve heard many successful founders, founders of later-stage companies like Dropbox and Airbnb, say that one of the most important things that they spend their time on as founder…