yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
How can AI support students in California?
My name is Michelle Marbar, and I am a professional learning specialist with KH Academy. I am super excited to have you all with us today as we share all of the cool new resources that are coming your way. So, thank you all so much for joining us today. O…
Special Investigation: Famous Tiger Temple Accused of Supplying Black Market | National Geographic
This is all being done at night. Pitch black, there are no lights. You see the cars driving into the Tiger Temple and the staff workers that are helping the wildlife traders. In December 2014, at the famed Tiger Temple in Thailand, investigators say a gro…
Tagging Tiger Sharks | SharkFest | National Geographic
Yeah, we’re just going to keep chumming, I think, and tee it up now. Paige has another chance to tag in a wahoo tiger shark before they gather in. As soon as I jumped in while she’s prepping the camera, I said, “Paige, this is your shot, this is your sha…
Less versus fewer | Frequently confused words | Usage | Grammar
Hello Garian, hello Rosie, hi David. Uh, so you’ve called me into the recording booth today? Yes, because uh, you have a bone to pick with me—just a little bit. Yeah, so I have always, in my usage, I always drawn a distinction between less and fewer. I w…
Geometric series introduction | Algebra 2 | Khan Academy
In this video, we’re going to study geometric series. To understand that, I’m going to construct a little bit of a table to understand how our money could grow if we keep depositing, let’s say, a thousand dollars a year in a bank account. So, let’s say t…
The Philosopher of Pleasure | EPICURUS
Pleasure is the first good. It is the beginning of every choice and every aversion. It is the absence of pain in the body and of troubles in the soul. Epicurus. In the third century BC on the Greek island of Samos, a man was born that would become the fo…