yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Joe Exotic and the Tiger Trade | Trafficked with Mariana van Zeller
[Car horns blaring] [Phone ringing] [Jungle wildlife calls] OPERATOR (THROUGH PHONE): Prepaid call from. JOE EXOTIC (THROUGH PHONE): Joe Exotic. OPERATOR (THROUGH PHONE): An inmate at the Grady County Jail. This call is also subject to being recorded o…
Factorization with substitution | Polynomial factorization | Algebra 2 | Khan Academy
We’re told that we want to factor the following expression that they have right here, and they say that we can factor the expression as ( u + v ) squared, where ( u ) and ( v ) are either constant integers or single variable expressions. What are ( u ) an…
Khan Academy Ed Talk with Bob Hughes - Tuesday, March 23
Hi everyone, Sal Khan here from Khan Academy. Welcome to our Ed Talks live stream, which you could view as a flavor of our Homeroom live stream. Uh, and before we jump into a very exciting conversation with Bob Hughes, who’s the Director of K-12 U.S. Educ…
Why You'll Regret Buying Crypto In 2022
What’s up, Graham? It’s Guys here. So I think it’s about time we have an honest, open talk about something that’s been on my mind for a while now. Imagine taking your hard-earned money, ripping it in two, and now you’re left with half of what you started …
Static electricity | Physics | Khan Academy
One of my favorite things to do with a balloon is to rub it on my wife’s hair because it makes the hair stick to the balloon. Isn’t that pretty cool? Why does it happen? And now, if I bring the balloon close to a few pieces of paper, look! The pieces of p…
Identifying scale factor in drawings | Geometry | 7th grade | Khan Academy
So right over here, figure B is a scaled copy of figure A, and what we want to do is figure out what is the scale factor to go from figure A to figure B. Pause the video and see if you can figure that out. Well, all we have to do is look at corresponding…