yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Diane Greene's Advice for Founders
Hi everyone! I guess I’m miked up. I can stand right here. Um, I’m just here to introduce our next speaker, who’s one of my just favorite people, Diane Green. She is, you all, I’m sure know her, so she needs no introduction. But she’s the chief of Google’…
5 Ways To INSTANTLY BOOST Your Credit Score ASAP
What’s up you guys, it’s Graham here. So we gotta talk about one of the most important things on the planet. And no, it’s not me asking you to smash the like button and claim your four free stocks down below in the description. Instead, this is about your…
The Ponzi Factor - Introduction
Quandt style LLC presents the Ponzi factor: The simple truth about investment profits by Tom Liu, narrated by Sean Pratt. All truth passes through three stages: first, it is ridiculed; second, it is violently opposed; third, it is accepted as self-eviden…
YC's Summer 2022 Startup Job Expo - Pitches from 30 YC founders & find your next startup
[Music] Thanks for joining us at YC’s Summer 22 Jobs Expo. I’m excited to introduce you to 30 great YC founders who are going to pitch you on why you should join their startup. They’re going to share what they’re passionate about, what they’re building, w…
The Stock Market Is Broken
What’s up, you guys? It’s Graham here. So, we got to take a moment and talk about something serious—something that no investor wants to think about, something that’s happened in the past but many people feel is going to happen again in the future. And no,…
Bitcoin Just Got Cancelled
What’s up, Graham? It’s Guys here. So, this is not the video I was planning to make today, but here we are. Tesla and Elon Musk just completely pulled the rug from underneath Bitcoin, and with one single tweet, $365 billion was lost from the entire crypto…