yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Strategy in solving quadratic equations | Quadratic functions & equations | Algebra I | Khan Academy
[Instructor] In this video, we’re gonna talk about a few of the pitfalls that someone might encounter while they’re trying to solve a quadratic equation like this. Why is it a quadratic equation? Well, it’s a quadratic because it has this second degree …
Introduction to integral calculus | Accumulation and Riemann sums | AP Calculus AB | Khan Academy
So I have a curve here that represents ( y ) is equal to ( f(x) ), and there’s a classic problem that mathematicians have long thought about: how do we find the area under this curve, maybe under the curve and above the x-axis, and let’s say between two b…
the moon is leaving
If you applied a coat of paint to the bottom of your shoes every single day, one coat on top of the other, every morning, you would leave Earth just as quickly as our moon is leaving us. Every day, the moon moves about a tenth of a millimeter away from Ea…
My Advice for Each Stage of Life
There’s a life cycle, right? Your teens, your 20s, your 30s, and so on. Every phase is a little bit different, or quite a bit different. People have asked me, uh, in their 20s, what is good advice for their 20s? You are about to go independent. You were d…
The Soul of Music: Rhiannon Giddens excavates the past | Podcast | Overheard at National Geographic
Foreign Douglas: I’m a producer here at Overheard, and today we’ve got something special for you. Part one of our four-part series focusing on music exploration and Black history. It’s called “The Soul of Music.” A National Geographic explorer will be sit…
The Spirit of Takumi | National Geographic
[Music] While I was in Hiroshima, Japan, I met craftsmen who embodied the Japanese tradition of takumi. Takumi means, in Japanese, a master craftsman, but it is so much more than that. It’s not just a job; it’s a passion; it’s a total dedication to a sing…