yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Ask Sal Anything! Homeroom Wednesday, July 22
Foreign Hi everyone, welcome to our homeroom live stream. Uh, Sal here from Khan Academy. I do have one announcement. I think we’ve already made this on social media and email, but just to make sure everyone’s on the same page: today was supposed to be t…
See How Ancient Past and Present Meet in This Coastal Town | National Geographic
(soft music) [Gabriel] This is Huanchaco. This is my hometown. Huanchaco is a small fishing village that is north of the city of Trujillo, and it’s a very rich place in archaeological sites. There has been a continuous occupation in this area for more th…
Let's Talk About Clean Energy | Breakthrough
I believe that there is energy, clean safe energy all around us, and that it is our opportunity now and our obligation to find ways to access it. I’ve always had great fun converting other people’s work into my own. When I was a kid, I liked coloring book…
Clearly I messed something up...
Hey, it’s me Destin. Welcome back to Smarter Every Day! So the last video I uploaded was about helping an orphanage and trying to motivate you to help me build this orphanage, but it’s pretty clear that I messed that up. So I’ve flown over to England, I’…
What All Investors Need to be Considering (w/@MinorityMindset)
Hey guys, and welcome back to the channel! So, just the other day, I had the privilege of sitting down with Jaspreet Singh from the Minority Mindset for about 40 minutes, which was really, really cool. If you don’t know Jaspreet, he has over a million sub…
Inside the Struggle to Save an Endangered Grouper Species | National Geographic
This female Nassau grouper caught off the coast of Biz is taking her last few breaths. The survival of this endangered species, an apex predator, is critical to the survival of the coral reef. The Bellian Barrier Reef, the second longest in the world, is …