yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
How to Make Fresh Sprouts | Live Free or Die: How to Homestead
I would like to show you how to make fresh clover sprouts. It’s one of the things that Tony and I have a hard time getting in the winter: our fresh vegetables. One solution to that is to make sprouts. Here I have a whole bunch of clover seeds. Just take a…
Kevin O'Leary Visits Longines Boutique | Teddy Baldassarre
[Music] Every time I go out shopping with Teddy, I end up with another bad influence. It’s very bad. Interesting! I’m buying it right here. That’s how her he is. Oh, sorry Howard, never mind! You got the aviation baby. What should you do? [Music] Mr. Wo…
Caesar, Cleopatra and the Ides of March | World History | Khan Academy
[Instructor] Where we left off in the last video, we saw Julius Caesar had conquered Gaul as proconsul. And, near the end of his term as proconsul, the senators in Rome were afraid of him. He was this popular, populist, charismatic figure; he had just had…
Why Sharks Attack Cage Divers | Shark Attack Files
It’s a mystery. Great whites around the world have been attacking divers in cages. No one knows why this is frightening. Finally, Dr. Greg Scomo may have cracked the case. He thinks the sharks are chasing bait; they want to tease these sharks in tight to …
Capturing the Iditarod - Behind the Scenes | Life Below Zero
We are here to document the lives of people living in Alaska. The harsh reality is the environment we’re up against. It makes it tough to do our job. Working on Life Below Zero can be very dangerous. Guns here, cameras; you never know what to expect. You …
shower thoughts that broke the internet..
How many sides does a piece of paper have? I’ll give you a second. Two? No, it’s actually six. You don’t realize it until you start stacking it. There’s a lot of things in life that take us by surprise, a lot of things that aren’t really as they seem. Li…