yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Hosain Rahman at Startup School SV 2014
Thank you for coming. I hope to do not much talking at all, and I’m going to just ask you because it’s sort of a strange thing you have this. I want you to sort of go through the chronology of the early days, yeah. Um, and talk about you really did have a…
200 VIDEOS
Hey, Vsauce. Michael here. And we now have 200 videos. So, to celebrate, I’m going to recommend some videos. 200 of them, inside playlists, especially ones that you guys have been submitting to me. But to begin, let’s go all the way back to the start. Or,…
Graphing negative number addition and subtraction expressions | 7th grade | Khan Academy
In this video, we’re going to add and subtract negative numbers on a number line. The important thing to realize is if you are adding a positive number, you start at some point on the number line and you move that many units to the right. If you are addin…
Khanmigo for Teachers
Hi! I’m Michelle, a professional learning specialist here at KH Academy and a former classroom teacher just like you. Meet Kigo, your AI-driven companion who’s revolutionizing teaching for a more engaging and efficient experience. Kigo has many exciting f…
Conservation of angular momentum | Torque and angular momentum | AP Physics 1 | Khan Academy
Let’s talk a little bit about the conservation of angular momentum. This is going to be really useful because it explains diverse phenomena in the universe. From why an ice skater’s angular speed goes up when they tuck their arms or their legs in, all the…
Traversing Glaciers | Best Job Ever
Most of these glaciers are declining. Someone has to go out there and really show what’s happening because climate change is here and now. Me and a guy called Vincon Kard, we’re going to cross all the 20 biggest glaciers in the world. We always try to ha…