yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
15 TRAITS Of The SUPERIOR MAN
Hello Alexers! On this Sunday motivational video, we’re looking at how to become a superior individual. There’s always room to become a better person, yet most people decide to become complacent in their mediocrity. So, a discussion on the traits and the …
Khan Academy announces GPT-4 powered learning guide
Hi everyone, Sal Khan here from Khan Academy, and I’m very excited to let you all know about the work that Khan Academy is now doing in artificial intelligence. Obviously, over the last many months, there’s been a lot of talk about artificial intelligenc…
Stock Market Trivia Night! (w/ @InvestWithQueenie)
You are live! We are live! Hello, everybody! If you can hear us, let us know. I’m joined by Queenie. How are you going, Queen? “Yeah, good! It’s so good to be here, and yeah, streaming live, it’s so much fun. I love live! Like, mystery in the air, like wh…
The Cookiecutter Shark | Sharks of Bermuda Triangle
NARRATOR: The Bermuda Triangle contains some of the deepest trenches in the world. The Puerto Rico Trench at the Triangle’s southern point reaches depths of over 27,000 feet. But Dr. Gallagher suspects that Mabel may frequent the Tongue of the Ocean, a st…
Speed and precision of DNA replication | Biomolecules | MCAT | Khan Academy
In the earlier video on DNA replication, we go into some detail about leading strands and lagging strands and all of the different actors, all of these different enzymatic actors. But I left out what is probably the most mindboggling aspect of all of this…
Adding the opposite with number lines | 7th grade | Khan Academy
So, this number line diagram here, it looks like I’m adding or subtracting two numbers. I’m starting with what looks like a positive nine. I’m starting at 0 and going nine units to the right, so that’s a positive nine. To that, it looks like I might be a…