yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Marriage Advice - Smarter Every Day 181
Okay, story time. About 15 years ago, I was just about to get married, and like in the tux is the whole bit. My dad looks at me, and he says, “Son, no matter what your wife makes to eat, you eat it, and you ask for seconds, no questions asked.” Well, a s…
Restoring the River's Flow | DamNation
Dropped my gear off, schlepped it all out over the fence, drove back down, parked the van, got on my bicycle, rode up there, stashed it. Gl’s canyons near vertical; it’s very steep, it’s dark, it’s a damp slippery dam with a 200t abyss right below. So we’…
15 Things You Envy In Other People
Nothing says I have no confidence in myself more than envying other people and being obvious about it. They seem to have it all while you’re here, stuck yet again. Well, today we’re talking about 15 things you envy in other people, so you can start doing …
Kevin O'Leary Jamming with Rock and Roll Legend Randy Bachman
Randy Bachman is a legend in the world of rock and roll. He’s earned over 120 gold and platinum albums and singles and sold over 40 million records over his long career as both a performer and producer. CBC Music has declared November as guitar month. In …
THE FED JUST FLIPPED | Major Changes Explained
What’s up you guys, it’s Graham here. So throughout the last month, there have been non-stop headlines about how the Federal Reserve is crashing the market, and in a way, they kind of did. January of 2022 quickly became the worst month on record ever for…
Modal verbs | The parts of speech | Grammar | Khan Academy
Hello grammarians! Today we’re going to talk about a class of auxiliary or helper verbs called the modal verbs. These are verbs that have special properties and help other verbs. But what is modality? My fellow grammarian, I am so glad you asked! Modalit…