yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Why You'll Regret Buying Stocks In 2023
What’s up, Graham? It’s guys here, and 2023 is already off to an interesting start. For example, a Florida woman was recently pulled from a storm drain for the third time in two years. The National Guard general was fired for ordering troops to take his m…
How to Create Luck - Dalton Caldwell, Y Combinator Partner
I’m Dalton. I’m a partner at Y Combinator. I was the founder of a company called imeem in 2003 and a company called mixed-media labs in 2010. I’m working at YC since 2013. Okay, how do you create luck? The way to create luck is to move much faster than e…
Samurai Sword - Linked | Explorer
NARRATOR: See this? This is a samurai, an elite Japanese warrior. And this is his sword, his samurai sword. Watch out! It’s super sharp. They’ve been around for over 1,000 years, as iconic to Japanese culture as cherry trees or Mt. Fuji. And thanks to, o…
Michael Burry: The 'Greatest Bubble of All Time' Just Burst (recent tweets explained)
The quote “greatest bubble of all time has started to burst, and it’s not done yet,” according to Michael Burry. Burry made his name correctly predicting the crash of the US housing market during the lead-up to the global financial crisis. This crash was …
Calculating kinetic energy | Modeling energy | High school physics | Khan Academy
In this video, we’re going to talk about kinetic energy, and we’re also going to think about how to calculate it. So, you can already imagine, based on the word “kinetic,” which is referring to motion, that this is the energy that an object has by virtue …
Buddhism: context and comparison | World History | Khan Academy
We’ve already had many videos on Buddhism and its connections to Hinduism, but what we want to do in this video is more explicitly answer an important question: Why did Buddhism emerge when and where it did? This is a question that you should always be as…