yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Helicopter Physics Series #6 - LASER HELICOPTER BLADES - Smarter Every Day 49
(Carl) We have our bolt and thread here to balance, and we can run the nut in and out to get the perfect balance. (Destin) That’s pretty smart. I bet a smart guy came up with that. (Carl) Oh… a… brilliant person. [laugh] Oh hey. Yeah. You see that? You …
Multiplying monomials | Polynomial arithmetic | Algebra 2 | Khan Academy
Let’s say that we wanted to multiply 5x squared, and I’ll do this in purple: 3x to the fifth. What would this equal? Pause this video and see if you can reason through that a little bit. All right, now let’s work through this together. Really, all we’re …
Proof: The derivative of __ is __ | Advanced derivatives | AP Calculus AB | Khan Academy
The number e has all sorts of amazing properties. Just as a review, you can define it in terms of a limit: the limit as n approaches infinity of 1 + 1/n to the nth power. You could also define it as the limit as n approaches zero of 1 + n to the 1/nth pow…
Filming the Alaskan Wilds - Behind the Scenes | Life Below Zero
We are here to document the lives of people living in Alaska. The harsh reality is the environment we’re up against; it makes it tough to do our job. They’re working on Life Below Zero, and it can be very dangerous—guns here, cameras here—you never know w…
The Spectacular Failure of Rivian Stock.
I don’t know if you’ve been paying attention to the EV space recently, but things are getting tough out there. Tesla went gangbusters until 2022 and has since struggled. BYD gangbusters until 2022 and has now struggled. VW went well in 2021 and has now st…
Functions | Intro to CS - Python | Khan Academy
You’re writing a program, and it’s starting to get pretty long. Plus, you’re duplicating a lot of code because you need to perform the same task at several different points in the program. How can we better keep this code organized and reduce the repetiti…