yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
2015 AP Calculus BC 5c
Find the value of K for which F has a critical point at X = -5. All right, so let’s just remind ourselves what F of X and F prime of X were. They gave it to us at the top. F of X is equal to ( \frac{1}{x^2 - Kx} ) and then F prime of X is equal to all of…
The Search for Intelligent Life on Earth | Cosmos: Possible Worlds
[bees buzzing] NEIL DEGRASSE TYSON: For thousands of years, bees have been symbols of mindless industry. We always think of them as being something like biological robots, doomed to live out their lives in lockstep, shackled to the dreary roles assigned …
Type casting | Intro to CS - Python | Khan Academy
Have you ever tried to make your print output a bit more descriptive, like this, only to get a type error? Why does that happen, and how do we fix it? Let’s put our debugging skills to work. We saw that my program last worked when I was just printing the…
Khan Academy Ed Talks with Judy Heumann
Hello and welcome to Ed Talks with Khan Academy. I’m Kristen DeCervo, the Chief Learning Officer here at Khan Academy, and today I am excited to welcome Judy Heumann, who is an international disability rights activist. I look forward to talking to her abo…
The Better Boarding Method Airlines Won't Use
[Inaudible airport announcements] [Grey sighs] What’s the fastest way to board an airplane? I mean, you can’t just throw open the gates like funneling cattle into a chute. That’s not for us. We’re primates, after all! So let’s put our monkey brains to wor…
10 QUICK Life Hacks To Save Money ASAP
What’s up, you guys? It’s Graham here! So, as some of you might already know, I am slightly obsessed with saving money. Okay, fine, that was a lie. I’m very much infatuated with saving money and trying to find the most creative ways to cut back without ev…