yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
How To Grow Your Direct To Consumer Brand | The Gourmet Insider | Chef Wonderful
[Music] And so now you’ve recently partnered with Vintage Wine Estates on the new lifestyle platform called Shop Mr. Wonderful. How did that come about, and have you had a long-standing relationship with Vintage Wine Estates? It’s a remarkable story and …
This is what I do everyday...
Oh my God, it’s such a bad parking job! Well, how about this: if you shoot more than three over, you have to let me drive your Cybertruck for a week. Can you believe that? Chad has it out for me today! Like, come on. What’s up everyone? Welcome back to t…
Homeroom with Sal & Magnus Carlsen - Friday, March 12
Hi everyone! Welcome to homeroom with Sal. We have a very exciting conversation, and I also have two temporary co-hosts today because our guest is a bit of a hero for them. We have a bit of a chess household, so we’re going to have a hopefully very engagi…
The Life of a Miner In Colombia | Mine Hunters
Meanwhile, outside, Fred is using his experience in large commercial gold mines to build a system that can protect the area around the mine. So basically, what’s happening here is we’ve got a lot of water drainage out of the mine, and with the water’s co…
How to Sell by Tyler Bosmeny
All right, good morning everyone! We are halfway through Startup School. Can you believe it already? Wow! Yeah, or more correctly we will be after this week. This is going to be a great week of talks, lectures, conversations. Today we have Tyler from Clev…
Measuring angles with a circular protractor | Math | 4th grade | Khan Academy
Measure the angle in degrees. So here we have this blue angle that we want to measure in degrees, and it’s sitting on top of this circle. That circle is actually a protractor. Sometimes we see, and maybe what you’re used to seeing, is protractors that are…