yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Watch a Masterpiece Emerge from a Solid Block of Stone | Short Film Showcase
I always find that you have to be a bit mad to become a stone carver. I mean, this isn’t the Renaissance anymore. Stone isn’t a primary building material anymore. Why, why would you go into an industry? Why would you go into a profession that is expensive…
Let’s chat a bit
Me okay, so got it. How can I scream? Okay, let me announce this on my Instagram so that more people can join. Okay, let me put this here so that you guys can see me. I hope the lighting works; I know it’s not the best right now. Ow! Okay, let me put this…
Meet the 'Blood Bikers' Who Save Lives in the U.K. | National Geographic
[Music] It would be totally unnatural for you not to think about what has happened to the patients, but the job may well have changed the course of somebody else’s. [Music] The evening starts at about 7:00 p.m. for us. Hello, the controller would ring yo…
Elevator Thought Experiment | Genius
I’d like to continue our work together. So why don’t you come to Prague with me, Jakob? Maybe I could get you a position at the University. We’d have time to work on accelerated motion. Albert, I am flattered. But I’ve received another offer. A [inaudi…
How Growing Trees Helps Fight Poverty in Cameroon | National Geographic
[Music] Just imagine that you are a farmer in Cameroon. You spend all your life struggling to cultivate cocoa, coffee, and rubber, cutting which you don’t eat. They are called cash crops, and that’s where the problem lies. Big Industry fixes their prices,…
Spinning Tube Trick
[Applause] Check this out! I have a piece of PVC electrical conduit, and on one end I’ve labeled an O, and the other end I’ve labeled an X. Now I’m going to put it on the table and press down with my forefinger on the O, and I’m going to give it a [Applau…