yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
"America's Best Idea" - President Obama on National Parks | National Geographic
Two of your predecessors felt very much the same thing, didn’t they? Teddy Roosevelt walked these very trails through these redwood trees along with John Muir, the father of the American conservation movement, and these granite mountains. They lit a fire …
15 Traits Of A STRONG PERSON
Strong people are valuable assets in any space, but it takes a lot of work to be one. Becoming a strong person is not something we’re born with or something that happens in a day; it’s built over time. There are certain characteristics these people share,…
Charlie Munger Warns About the Stock Market. This is His Portfolio Now
Just this past week, Charlie Munger sat down for a rare interview. In this interview, Charlie Munger warned that this current stock market is, quote, “the craziest market I have ever seen.” Considering Charlie Munger is 97 and has lived through his fair s…
15 Biggest Threats to Your Financial Security
Have you ever felt like your financial security was walking a tightrope? It can feel like any small gust of wind, a sudden expense, a job hiccup, or an unexpected twist in life could throw everything out of balance. But what if you could see those gusts o…
Mohnish Pabrai: How to Invest Like Warren Buffett & Charlie Munger
People think that entrepreneurs take risk and they get rewarded because they take risk. In reality, entrepreneurs do everything they can to minimize risk. They are not interested in taking risk; they want free lunches, and they go after free lunches. So i…
Office Hours With Sal: Friday, March 20. Livestream From Homeroom
Is there a lag? Okay, stand by. Here we go. Hello! I think we are up now. So, uh, thanks for joining our, uh, morning live stream here at Khan Academy. We’re calling it something of a homeroom, a national homeroom, or international homeroom, I guess. Yo…