yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Modeling ticket fines with exponential function | Algebra II | Khan Academy
Sarah Swift got a speeding ticket on her way home from work. If she pays her fine now, there will be no added penalty. If she delays her payment, then a penalty will be assessed for the number of months t that she delays paying her fine. Her total fine f …
Can Fake Furs Help Protect Leopards? | National Geographic
We’re talking about hundreds of thousands of people all gathering in one place, and it’s the most amazing spectacle you could see. But you can’t ignore the fact that there are thousands of labor. The use and trade of leopard skins is something new for us.…
Graphs of indefinite integrals
Find the general indefinite integral. So we have the integral of 2x dx. Which of the graphs shown below, which of the graphs below shows several members of the family? So if we’re talking about, so if we’re taking the integral of, [Music] 2x dx, we’re …
Pluto 101 | National Geographic
[Instructor] At the edge of the solar system, Pluto pushes the boundaries of our understanding of the universe. Nestled within the far-flung Kuiper belt, the dwarf planet is believed to be one of the countless celestial objects left over from the formatio…
The Psychology of Narcissism [Traits, Symptoms, Origins & How to Protect Yourself]
Some experts call them inhuman, along with psychopaths and sociopaths, because of their significant lack of empathy and immense capacity for destruction. They don’t fight shy of systematic abuse and often leave a trail of misery when they move from prey t…
Who is God? | A Pastor, A Rabbi and an Imam | The Story of God
[Music] Okay, so stop me if you’ve heard this one: a rabbi, a pastor, and an Imam walk to a bar. Okay, so it wasn’t a bar; it was a diner to discuss my show, “The Story of God,” about who is God. So the Rabbi says, “I think it’s really intimidating to j…