yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Three types of sentence | Syntax | Khan Academy
Hello grammarians! Hello Paige! Hi David! So, we have three different sentence varieties that we’re going to talk about today. All right, um here are their three flavors: Flavor number one, declarative sentences; flavor number two, interrogative sentence…
Did I quit med school? | How I'm spending my days living alone in Rome 🇮🇹 LIFE UPDATE
[Music] foreign [Music] Good morning everyone! Today is another day, and I’m going to take you guys along with what I do in the day because a lot of you guys have been asking: “Don’t you have med school? What are you doing today? What are you doing with …
Manipulating expressions using structure (example 2) | High School Math | Khan Academy
We’re told, suppose ( a + b ) is equal to ( 2a ). Which of these expressions equals ( b - a )? All right, I encourage you to pause the video and see if you can figure that out. Which of these expressions would be equal to ( b - a )? It’s going to just in…
How Do You Become Santa Claus? Santa School, Of Course! | National Geographic
Now the reason why it’s important that you learn to do this, it’s because you’re the most photographed people in the world. The Charles W. Howard Santa Claus School is the world’s oldest Santa Claus school. It is here to help Santa’s become [Music]. The S…
The Sacrifice of Cassini | Cosmos: Possible Worlds
[Ethereal music] Why do some worlds have rings and others don’t? Why no rings for Earth or Mars? We wouldn’t recognize Saturn without them. He looks naked without his rings. But how did he get them in the first place? This is exactly what the French astr…
Using the tangent angle addition identity | Trigonometry | Precalculus | Khan Academy
In this video, we’re going to try to compute what tangent of 13 pi over 12 is without using a calculator. But I will give you a few hints. First of all, you can rewrite tangent of 13 pi over 12 as tangent of… instead of 13 pi over 12, we can express that…