yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
15 Ways to Get Out of Your Slump
Damn the big slump. The one where two full nights of sleep and takeout on TV on the couch don’t help you. It’s been weeks. You still feel like crap. This is the worst time to feel that way. You need to be on your game. So what do you do? Slumps are a par…
Half the universe was missing... until now
This episode was sponsored by KiwiCo. More about them at the end of the show. Until recently, half the universe was missing or hidden or just… undetected. And no, I’m not talking about dark matter or dark energy, which make up 27 and 68 percent of our un…
Charlie Munger’s Final Warning for Investors in 2024
It’s a radically different world from the world we started in. I think it’s going to get tougher. That was Charlie Munger speaking at the Berkshire Hathaway shareholders’ meeting earlier this year. I was there, sitting alongside tens of thousands of peopl…
Perfect square factorization intro | Mathematics II | High School Math | Khan Academy
We’re going to learn to recognize and factor perfect square polynomials in this video. So, for example, let’s say I have the polynomial x² + 6x + 9. If someone asks you, “Hey, can you factor this into two binomials?” Well, using techniques we learned in o…
Face-to-Face With Wildlife in Florida’s Hidden Wilderness | Best Job Ever
When you swim into one of these Springs and then a manatee comes around the corner, it’s like everything slows down and takes a breath. It sometimes will swim right up to you; you can count the whiskers on its face or see the propeller marks on its back. …
Predator-prey population cycles | Ecology and natural systems | High school biology | Khan Academy
What I want to do in this video is think about how different populations that share the same ecosystem can interact with each other and actually provide a feedback loop on each other. There are many cases of this, but the most cited general example is the…