yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
One, Two, Three Bites, You’re Out | Wicked Tuna: Outer Banks
Michael: “Let that one go, all right? Got a double on, baby! What do you want me to do with this one?” TJ: “Let him go! Just cranking up. Keep it tight on them! Get tight on him!” F: “Watch out! What we’re here for, baby! Got a double on here. I think h…
Cyrus the Great establishes the Achaemenid Empire | World History | Khan Academy
As we enter into the 6th Century BCE, the dominant power in the region that we now refer to as Iran was the Median Empire. The Median Empire, I’ll draw the rough border right over here, was something like that, and you can see the dominant region of Media…
Why Are Astronauts Weightless?
[Applause] [Music] Have you wondered what it would be like to be an astronaut floating around in the space station? But why are the astronauts floating? I’m here at the PowerHouse Museum in Sydney to find out if anyone knows the answer. Why are they floa…
Identifying constant of proportionality graphically
We’re asked what is the constant of proportionality between y and x in the graph. Just as a reminder, when we’re talking about the constant of proportionality, it sounds like a very fancy thing, but it’s not too bad. If we’re thinking about any xy pair o…
Our Bank Went Bankrupt
So our bank went bankrupt last Friday, but it’s not just us. In fact, most tech startups in Silicon Valley and over 2,500 Venture Capital firms held their funds with the 16th largest bank in the United States. Of course, we’re talking about the Silicon Va…
Later stages of the Civil War part 1
All right, so we’ve been talking about the later stages of the American Civil War. In the last videos, we talked about the Battle of Gettysburg and the Gettysburg Address, which happened in November of 1863, as Abraham Lincoln went to the site of the Batt…