yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Ray Dalio: A 'Lost Decade' Coming For Stock Investors
Hey guys, welcome back to the channel! Interesting topic for today’s video: Ray Dalio is coming out and he is certainly doubling down on his views around the shutdown and the economy moving forward. His fund, Bridgewater Associates, came out last week and…
My Investing Plan For 2023 (How To Prepare)
What’s up, Graham? It’s guys here. So 2023 is probably going to be one of the most confusing years for investing. After all, stocks are the cheapest they’ve been in two years, but there’s a chance they could drop even further. Real estate has only starte…
15 Signs You’re NOT COOL
We are not talking about people who use the wrong emojis here, but there’s a case to be made about some of you not being as cool as you think you are. So, let’s put it to the test and see how many of these you tick off. Here are 15 signs you’re not cool. …
Why New Years Resolutions Fail & How To Succeed
Most New Year’s resolutions fail. So in this video, I want to talk about the science of why they fail and how to avoid that so your New Year’s resolutions actually succeed. I want to tell you about three of my New Year’s resolutions for 2020. The first o…
Fundraising Fundamentals By Geoff Ralston
We’re gonna have two lectures on fundraising: the this one, which is going to be a high-level overview, which I’ll do, and then next week my partner Kirsty will do a deep dive into the mechanics of fundraising, which are really fun, so you wouldn’t want t…
Diving Between the Continents (Silfra, Iceland) - Smarter Every Day 161
Destin: “You wanna do it, yeah, do it.” “Very good.” “Hey, it’s me Destin, welcome back to Smarter Every Month… day! Smarter Every Day.” “If you’ve never had four children, you know that four children are a handful.” “Today on Smarter Every Day, my wife …