yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
First Look: The Long Road Home | The Long Road Home
♪♪ KELLY: Memory is a powerful thing. ♪♪ There are some events that stick in the mind… forever defining the difference between before and after, and instantly redefining everything that matters. For the soldiers and families of the Army’s 1st Cavalry Divi…
Noble’s Story | How Khan Academy helped me get into my dream college
That was one of the best days of my life. Honestly, like signing day, I just knew that all the hard work that I put into this dream finally paid off. I’m Noble; I’m a freshman at Brown University. I’m a receiver on the football team. It became apparent t…
The Indefinite Article | Parts of Speech | Grammar | Khan Academy
Hello grammarians! We’ve talked a little about the difference between these special adjectives, a and an, and the also known as the articles. I want to go a little deeper. Now, we know that “the” is the definite article and “a” or “an” is the indefinite,…
REAL Human HORNS! ... and more REAL WORLD WTFs
Vsauce, hello! I’m coming to you today from Los Angeles. I went to the Griffith Observatory today and everything was so green and verdant. I decided instead of doing video game WTFs, let’s do some real-life WTFs. I pulled together some of the grossest fac…
Breaking down forces for free body diagrams | AP Physics 1 | Khan Academy
Let’s say we have some type of hard flat frictionless surface right over here. That’s my drawing of a hard flat frictionless surface. On that, I have a block, and that block is not accelerating in any direction; it is just sitting there. Let’s say we kno…
How YOU Should INVEST $20,000 | Ask Mr. Wonderful #6 | Kevin O'Leary Answers Your Business Questions
Hi Kevin, my question is, what should I do with the 21,000 in my bank account? I’m only 20, and I have 21,000 because of a parent passing away when I was younger. Well, it’s definitely time for another session of Ask Mr. Wonderful! I got dozens of fantas…