yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Motion problems: finding the maximum acceleration | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A particle moves along the x-axis so that at any time T greater than or equal to zero, its velocity is given by ( V(T) = T^3 + 6T^2 + 2T ).

At what value of T does the particle obtain its maximum acceleration? So we want to figure out when it obtains its maximum acceleration.

Let’s just review what they gave us. They gave us velocity as a function of time. So let’s just remind ourselves: if we have, let’s say, our position is a function of time, so let’s say ( X(T) ) is position as a function of time, then if we were to take the derivative of that, ( X'(T) ), well, that’s going to be the rate of change of position with respect to time, or the velocity as a function of time.

If we were to take the derivative of our velocity, then that’s going to be the rate of change of velocity with respect to time—well, that’s going to be acceleration as a function of time. So they give us velocity. From velocity, we can figure out acceleration.

Let me just rewrite that. So we know that ( V(T) = T^3 + 6T^2 + 2T ). From that, we can figure out the acceleration as a function of time, which is just going to be the derivative with respect to T of the velocity.

So just use the power rule a bunch. That’s going to be this is a third power right there: ( 3T^2 + 12T + 2 ). So that’s our acceleration as a function of time. We want to figure out when we obtain our maximum acceleration.

Just inspecting this acceleration function here, we see it's quadratic; it has a second-degree polynomial. We have a negative coefficient out in front of the highest degree term, in front of the quadratic second-degree term, so it is going to be a downward opening parabola.

Let me draw in the same color. So it is going to have that general shape, and it will indeed take on a maximum value. But how do we figure out that maximum value? Well, that maximum value is going to happen when the acceleration value, when the slope of its tangent line is equal to zero.

We could also verify that it is concave downwards at that point using the second derivative test by showing that the second derivative is negative there. So let’s do that; let’s look at the first and second derivatives of our acceleration function.

I’ll switch colors; that one’s actually a little bit hard to see. The first derivative, the rate of change of acceleration, is going to be equal to: so this is ( -6T + 12 ). Now let’s think about when this thing equals zero. Well, if we subtract 12 from both sides, we get ( -6T = -12 ).

Divide both sides by -6; you get ( T = 2 ). So a couple of things: you could just say, “All right, look, I know that this is a downward opening parabola right over here. I have a negative coefficient on my second-degree term. I know that the slope of the tangent line here is zero at ( T = 2 ), so that’s going to be my maximum point.”

Or you could go a little bit further; you can take the second derivative. Let’s do that just for kicks. So we could take the second derivative of our acceleration function. This is going to be equal to 6, right? The derivative of ( -6T ) is 6, and the derivative of a constant is just zero.

So this thing, the second derivative, is always negative. So we are always concave downward. And so by the second derivative test at ( T = 2 ), well, at ( T = 2 ), our second derivative of our acceleration function is going to be negative.

And so we know that this is our maximum value, or max, at ( T = 2 ). So at what value of T does the particle obtain its maximum acceleration? At ( T = 2 ).

More Articles

View All
Are We At A Turning Point For Crypto? | Crypto Banter
[Music] [Applause] [Music] Oh, it’s a great time to welcome our friend Mr. Wonderful! Welcome back, and Jiren, welcome back to the show. Do you think that we’ve seen the bottom, and is — or are we headed for another leg down? I have a slightly different …
Differentiability at a point: graphical | Derivatives introduction | AP Calculus AB | Khan Academy
The graph of function f is given below. It has a vertical tangent at the point (3, 0). So (3, 0) has a vertical tangent. Let me draw that. So it has a vertical tangent right over there and a horizontal tangent at the point (0, -3). (0, -3) has a horizonta…
No Truth Can Be Justified
The initial guesses at what knowledge was all about amounted to what is known as the justified true belief vision of knowledge, and it’s still the most prevalent idea today. Anyone who calls themselves a Bayesian is a justified true believer, and that’s t…
How To Cold Email Investors - Michael Seibel
Founders often ask me how to cold email an investor when they’re interested in raising money. I receive tons of cold emails from founders, and I try to actually reply to all of them. Here are some tips on some things you should and shouldn’t do when cold …
Why Four Cowboys Rode Wild Horses 3,000 Miles Across America (Part 3) | Nat Geo Live
10 years ago we had um 6 8,000 horses a year being adopted out and that number has plummeted to about 2500 a year. Part of it’s an awareness thing; part of it’s people don’t know horses. But I found one story um that really touched me. After the unbrande…
We Made Face Shields - Smarter Every Day 233
Hey! It’s me, Destin. Welcome back to Smarter Every Day. I’m alone, so I can take this off. I am in a warehouse that was once used to work on the Saturn V rocket, and we have just spent the whole day tooling up a line to disinfect and sanitize 3D printed …