yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding decimals with ones and tenths parts


3m read
·Nov 11, 2024

Last video, we got a little bit of practice adding decimals that involved tths. Now let's do slightly more complicated examples.

So let's say we want to add four to 5.7, or we could read the second number as 5 and 7/10. Pause this video and see if you can do this.

So the way that my brain tries to tackle this is I try to separate the whole numbers from the tenths. You can view this as being the same thing as 4 + 5 + 7/10. All I did here is I broke up the 5 and 7/10 into 5 + 7/10. The reason why my brain likes to do that is because I can then say, "Okay, 4 + 5, that's just going to be equal to 9."

Then I just have to add the 7/10, so it's going to be 9 and 7/10. I can rewrite this as going to be equal to 9 and 7/10. And 9 and 7/10 I could write as 9.7. Even though in future videos we're going to learn other ways of adding decimals, especially larger, more complicated decimals, this is still how my brain adds 4 + 5.7, especially if I need to do it in my head.

I say, "Okay, 4 + 5 is nine, and then I have that 7/10," so it's going to be 9 and 7/10 or 9.7.

Now let's do another example where both numbers involve a decimal. So let's say I want to add 6.3 to 7.4. So, 6.3 + 7.4. Once again, pause this video and try to work through it on your own.

Well, my brain does it the same way. I break up the whole numbers and the decimals. And once again, there are many different ways of adding decimals, but this is just one way that seems to work, especially for decimals like this.

So we could view this as 6 and 3/10. I'm breaking up the 6.3, the 6 and 3/10 into 6 + 3/10, plus 7 and 4/10, which is 7 + 4/10. Then, you can view this as 6 + 7, plus 3/10, plus 4/10.

So if you add the ones here, you have 6 ones and 7 ones. That's going to be equal to 13. And then 3/10 and 4/10, well if you have three of something and then you add four of that, that's going to be 7/10.

We would write 7/10 as 0.7, 7 in the tenth place. And then what's 13 + 7/10? Well, that is going to be 13. This is going to be equal to 13.7.

13.7, and we are done. Let me do one more example that will get a little bit more involved. So let me delete all of these.

So let's say I wanted to add 6.3 to, and I'm going to add that to 2.9. Pause the video and see if you can figure this out.

Well, let's do the same thing. This is going to be 6 and 3/10, so 6 + 3/10, plus 2 + 9/10. Or you could view this as 6 + 2, so I'll put all my ones together: 6 + 2, and then I'll put my tenths together: plus 3/10 + 9/10.

And so the 6 + 2 is pretty straightforward. That is going to be equal to 8. And now what's 3/10 + 9/10? This is going to get a little bit interesting.

3/10 + 9/10, and I could write it out. I could say this is 3/10, this is 9/10. Well, 3/10 + 9/10 is equal to 12/10. This is going to be 12/10. But how do we write 12/10 as a number?

Well, 12/10 is the same thing as 10/10 plus 2/10. The reason why I broke it up this way is that 10/10 is one whole. So this is going to be equal to one.

So when you add these two together, it's 12/10, which is the same thing as 1 and 2/10. So 1 + 2/10. Or, well, let me just write it that way.

So this I can rewrite as plus 1 plus 2/10. And then I think you see where this is going. I could add the 8 and the 1, and I get 9 and 2/10. So 9 and 2/10, so it's going to be 9.2.

Now, the reason why this one was a little bit more interesting is I added the ones. I got 6 + 2 is 8, but then when I added the tenths, I got something that was more than a whole. I got 12/10, which is 1 and 2/10.

And so I added one more whole to the 8 to get 9, and then I had those 2/10 left over. This is really good to understand because in the future, when you're adding decimals, you'll be doing stuff like carrying from one place to another.

This is essentially what we did when we added the 3/10 plus the 9/10. We got 12/10, and so we added an extra whole, and then we had the leftover 2/10. Hopefully, that makes some sense.

More Articles

View All
Ray Dalio On The Biggest Failure of His Career
So you had this huge failure after being wildly successful very early on in your life. You had to borrow $4,000 from your parents, and he started to reflect on this, and he came up with this very interesting principle: pain plus reflection is equal to pro…
A Smarter Path | Chasing Genius | National Geographic
I was about six. My favorite toy was my slot car track, and what that really is, is little electric cars on an electric road. That electric road, the thing stuck with me. I am an engineer. Rather than to make a better mousetrap, I chose to make the world…
Khan Academy Ed Talks with Marc Sternberg - Wednesday, March 10
Hello! Welcome everyone to Ed Talks with Khan Academy. I’m Christine DeCervo, the Chief Learning Officer here at Khan Academy, and today I’m excited to talk to Mark Steinberg, who is the K-12 Education Program Director at the Walton Family Foundation. So…
The 150 hour rule to buy an airplane.
Some people say, “Well, I want to buy an airplane. I’m going to fly 50 hours a year. I could rent it out the rest.” Your business is not to rent airplanes. You’re going to get a headache from all the costs and all the different things that are going to co…
The Story Behind Europe's Tallest Statue: The Motherland Calls | National Geographic
[Music] Mr. O’Reilly, 300ccs. Don’t name our canoes. No visible earth, it has the scale of America’s National Mall and the seriousness of Pearl Harbor. Combine them, and that’s what it feels like to visit Mammoth Gorgon, the memorial complex for the Batt…
Taxes vs Duty (Clip) | To Catch a Smuggler | National Geographic
You purchased this. We have to add this up. All right. So how much is this adding up to? Do you understand? Well, that’s one side. It’s got to go on the other side. There’s exact prices of how much she paid. She has ten. $15,000 worth of gold. Are you …