yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding decimals with ones and tenths parts


3m read
·Nov 11, 2024

Last video, we got a little bit of practice adding decimals that involved tths. Now let's do slightly more complicated examples.

So let's say we want to add four to 5.7, or we could read the second number as 5 and 7/10. Pause this video and see if you can do this.

So the way that my brain tries to tackle this is I try to separate the whole numbers from the tenths. You can view this as being the same thing as 4 + 5 + 7/10. All I did here is I broke up the 5 and 7/10 into 5 + 7/10. The reason why my brain likes to do that is because I can then say, "Okay, 4 + 5, that's just going to be equal to 9."

Then I just have to add the 7/10, so it's going to be 9 and 7/10. I can rewrite this as going to be equal to 9 and 7/10. And 9 and 7/10 I could write as 9.7. Even though in future videos we're going to learn other ways of adding decimals, especially larger, more complicated decimals, this is still how my brain adds 4 + 5.7, especially if I need to do it in my head.

I say, "Okay, 4 + 5 is nine, and then I have that 7/10," so it's going to be 9 and 7/10 or 9.7.

Now let's do another example where both numbers involve a decimal. So let's say I want to add 6.3 to 7.4. So, 6.3 + 7.4. Once again, pause this video and try to work through it on your own.

Well, my brain does it the same way. I break up the whole numbers and the decimals. And once again, there are many different ways of adding decimals, but this is just one way that seems to work, especially for decimals like this.

So we could view this as 6 and 3/10. I'm breaking up the 6.3, the 6 and 3/10 into 6 + 3/10, plus 7 and 4/10, which is 7 + 4/10. Then, you can view this as 6 + 7, plus 3/10, plus 4/10.

So if you add the ones here, you have 6 ones and 7 ones. That's going to be equal to 13. And then 3/10 and 4/10, well if you have three of something and then you add four of that, that's going to be 7/10.

We would write 7/10 as 0.7, 7 in the tenth place. And then what's 13 + 7/10? Well, that is going to be 13. This is going to be equal to 13.7.

13.7, and we are done. Let me do one more example that will get a little bit more involved. So let me delete all of these.

So let's say I wanted to add 6.3 to, and I'm going to add that to 2.9. Pause the video and see if you can figure this out.

Well, let's do the same thing. This is going to be 6 and 3/10, so 6 + 3/10, plus 2 + 9/10. Or you could view this as 6 + 2, so I'll put all my ones together: 6 + 2, and then I'll put my tenths together: plus 3/10 + 9/10.

And so the 6 + 2 is pretty straightforward. That is going to be equal to 8. And now what's 3/10 + 9/10? This is going to get a little bit interesting.

3/10 + 9/10, and I could write it out. I could say this is 3/10, this is 9/10. Well, 3/10 + 9/10 is equal to 12/10. This is going to be 12/10. But how do we write 12/10 as a number?

Well, 12/10 is the same thing as 10/10 plus 2/10. The reason why I broke it up this way is that 10/10 is one whole. So this is going to be equal to one.

So when you add these two together, it's 12/10, which is the same thing as 1 and 2/10. So 1 + 2/10. Or, well, let me just write it that way.

So this I can rewrite as plus 1 plus 2/10. And then I think you see where this is going. I could add the 8 and the 1, and I get 9 and 2/10. So 9 and 2/10, so it's going to be 9.2.

Now, the reason why this one was a little bit more interesting is I added the ones. I got 6 + 2 is 8, but then when I added the tenths, I got something that was more than a whole. I got 12/10, which is 1 and 2/10.

And so I added one more whole to the 8 to get 9, and then I had those 2/10 left over. This is really good to understand because in the future, when you're adding decimals, you'll be doing stuff like carrying from one place to another.

This is essentially what we did when we added the 3/10 plus the 9/10. We got 12/10, and so we added an extra whole, and then we had the leftover 2/10. Hopefully, that makes some sense.

More Articles

View All
Mughal rule in India | 1450 - Present | World History | Khan Academy
As we’ve talked about in other videos, by the time we get into the 15th century, Timur’s Persia and Central Asia has been fragmented. You have many of Timur’s descendants with their own kingdoms, especially in Central Asia. In 1483, in the Central Asian c…
How to Identify a Bull Shark | Raging Bull Shark
NARRATOR: Researchers have confirmed 100 bull shark attacks. But the real number may be much higher because the bull shark is so difficult to identify. When you first look at a bull shark, it doesn’t really jump out at you that it’s a bull shark. It just …
Michael Burry's Biggest Bet Just Made Him a Fortune
Well, it is highly likely that in the last couple of weeks, Michael Barry has made an absolute fortune. If you don’t know Michael Barry, he was one of the few that accurately predicted the US housing bubble back before it all blew up in 2008. Overall, he …
Krystle Wright Climbs to Capture a Perfect Photo in Moab | Photographer | National Geographic
Today is definitely the day for us to nail this project. We’re all here on a time-sensitive schedule. Thankfully, we found the perfect climb. Angela’s never climbed Seventh Serpent before, but she’s definitely a phenomenal climber. You can throw Angela in…
$5500 per year to tax-free Millionaire: Why you need a Roth IRA
What’s up you guys? It’s Graham here! So today I’m going to be making a video about what a Roth IRA is and why this is so important to sign up for one of these things as soon as you can and put money in it as soon as possible. Now, this is one of these v…
Corona Virus (COVID-19) discussion with Bill Gates
Hi everyone! Welcome to the Khan Academy daily homeroom. Sal Khan here — thanks for joining us. We have a pretty exciting show, I guess, today. For those of you all that this is the first time you’re joining, the whole idea is in this time of school closu…