yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

pH and solubility | Equilibrium | AP Chemistry | Khan Academy


4m read
·Nov 10, 2024

Changing the pH of a solution can affect the solubility of a slightly soluble salt. For example, if we took some solid lead(II) fluoride, which is a white solid, and we put it in some distilled water, the solid is going to reach an equilibrium with the ions in solution. Lead(II) fluoride forms lead(II) plus ions and fluoride anions in a 1:2 mole ratio. So, if we have two lead(II) plus ions in this diagram, we need four fluoride anions at equilibrium.

The rate of dissolution is equal to the rate of precipitation, and therefore the amount of solid and the concentration of ions in solution remains constant. This forms a saturated solution of lead(II) fluoride. To the system at equilibrium, we're going to add some H plus ions. By increasing the concentration of H plus ions in solution, we're decreasing the pH of the solution. When the H plus ions are added to the solution, most of them react with the fluoride anions that are present. So, H plus plus F minus forms HF.

Comparing the first diagram to the second diagram, I just happen to add three H plus ions, which will react with three of the fluoride anions that are present to produce three HF. Notice how the concentration of fluoride anions in solution has decreased from the first diagram to the second diagram because of the addition of the H plus ions.

So, the system was at equilibrium, and the concentration of fluoride anions was decreased. According to Le Chatelier's principle, the system will shift in the direction that decreases the stress. So, if the stress is decreased concentration of fluoride anions, the system will shift to the right to make more fluoride anions.

When the system shifts to the right, more lead(II) fluoride dissolves to increase the concentration of Pb2 plus and fluoride anion. We can see that by comparing the second diagram to the third diagram. The amount of solid has gotten smaller since some of that lead(II) fluoride dissolved, and we've increased the concentration of Pb2 plus and F minus in solution. The solid keeps dissolving, and the concentration of ions keeps increasing in solution until the system reaches equilibrium.

For a saturated solution of lead(II) fluoride at equilibrium, decreasing the pH or making the solution more acidic by increasing the concentration of H plus ions increases the solubility of lead(II) fluoride. This is why we saw more of the solid dissolve when the H plus ions were added.

This effect of decreasing the pH and increasing the solubility of a slightly soluble salt happens whenever the slightly soluble salt contains a basic anion. For this example, the basic anion is the fluoride anion, which reacts with the added H plus ions. When the basic anion reacts, that decreases the concentration of that basic anion, which caused the equilibrium to shift to the right.

There are many other examples of basic anions; two more would be the hydroxide anion and the carbonate anion. If a compound contains a basic anion such as the hydroxide anion, hydroxide functions as a base and reacts with H plus ions to form H2O. Therefore, the solubility of a compound containing a hydroxide ion would increase as H plus ions are added to the solution.

It's also important to note for this lead(II) fluoride problem, if the pH is decreased at a constant temperature, the Ksp value for PbF2 remains constant. So, the molar solubility does increase, but the Ksp value remains the same.

This time, instead of lead(II) fluoride, let's look at lead(II) chloride. Lead(II) chloride is also a white solid. If we dissolved some in solution, eventually we would reach an equilibrium between the solid and the ions in solution. So, this diagram here shows a saturated solution of lead(II) chloride, and the system is at equilibrium.

To the system at equilibrium, we decrease the pH by adding H plus ions to the solution. In this case, the chloride anions aren't basic enough to react with the H plus ions; therefore, we do not form HCl, and the concentration of chloride anions remains the same as it was in the original diagram.

So, if the concentration of chloride ions remains the same, then the concentration of lead(II) plus ions would remain the same. The system is still at equilibrium, and decreasing the pH had no effect on the solubility of the solids. Therefore, we have the same amount of lead(II) chloride solid on the bottom of the beaker in both diagrams.

Whenever an anion is an extremely weak base like the chloride anion, we say that this is an anion of negligible basicity. The solubility of salts with anions of negligible basicity is unaffected by changes in pH.

More Articles

View All
War is Madness | A Stoic Warning to the World
Man, naturally the gentlest class of being, is not ashamed to revel in the blood of others, to wage war, and to entrust the waging of war to his sons, when even dumb beasts and wild beasts keep the peace with one another. The ancient Greeks and Romans wer…
Mixed number subtraction
Let’s say that we want to figure out what is 7 and 11⁄12 minus 1 and 6⁄12. Pause this video and see if you can figure that out. All right, now let’s work on this together. So there’s a couple of ways that you could approach this. You can view this as the…
How To Grow Your Direct To Consumer Brand | The Gourmet Insider | Chef Wonderful
[Music] And so now you’ve recently partnered with Vintage Wine Estates on the new lifestyle platform called Shop Mr. Wonderful. How did that come about, and have you had a long-standing relationship with Vintage Wine Estates? It’s a remarkable story and …
Irregular plural nouns | -f to -ves | The parts of speech | Grammar | Khan Academy
Hello Garans! Today we’re going to be talking about the irregular plural. Previously, I had said that if you take any English word, any noun, say the word “dog,” and you tack an “S” onto the end of it, like so, boop, you get the word “dogs.” That’s how yo…
Going Inside MEGA Rehab | Explorer
Do ter de made a token attempt to increase capacity by building a mega rehab facility on a military base about four hours north of Manila. Our crew is the first ever to be allowed inside to film. It’s a big complex divided into four phases. Each phase can…
Free live tutoring at schoolhouse.world
Hi everyone, Sal here from Khan Academy, and I just wanted to make an announcement of something that I think many of you will find useful. I have a little bit of a side project going on called schoolhouse.world. It isn’t an official Khan Academy project, …