yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Area between a curve and and the _-axis | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So right over here I have the graph of the function y is equal to 15 / x, or at least I see the part of it for positive values of X. What I'm curious about in this video is I want to find the area not between this curve and the positive x-axis. I want to find the area up between the curve and the Y-axis, bounded not by two x values but bounded by two y values.

So, with the bottom bound of the horizontal line y is equal to e and an upper bound with y is equal to e to the 3rd power, pause this video and see if you can work through it.

One way to think about it, this is just like definite integrals we've done where we're looking between the curve and the x-axis. But now it looks like things are swapped around; we now care about the Y-axis. So, let's just rewrite our function here and let's rewrite it in terms of x.

So, if y is equal to 15/x, that means if we multiply both sides by x, xy is equal to 15, and if we divide both sides by y, we get x is equal to 15/y. These right over here are all going to be equivalent.

Now, how does this right over here help you? Well, think about the area; think about estimating the area as a bunch of little rectangles here. So, that's one rectangle, and then another rectangle right over there, and then another rectangle right over there. So, what's the area of each of those rectangles?

So, the width here that is going to be x, but we can express x as a function of y. So, that's the width right over there, and we know that that's going to be 15/y. And then, what's the height going to be? Well, that's going to be a very small change in y; the height is going to be dy.

So, the area of one of those little rectangles right over there, say the area of that one right over there, you could view as 15/y dy. And then we want to sum all of these little rectangles from y is equal to e all the way to y is equal to e to the 3rd power.

So, that's what our definite integral does. We go from y is equal to e to y is equal to e to the 3rd power. So, all we did—we're used to seeing things like this, where this would be 15/x dx; all we're doing here is this is 15/y dy.

So, let's evaluate this. We take the anti-derivative of 15/y and then evaluate at these two points. So, this is going to be equal to the anti-derivative of 1/y, which is the natural log of the absolute value of y.

So, it's 15 * the natural log of the absolute value of y, and then we're going to evaluate that at our endpoints. So, we're going to evaluate it at e to the 3 and at e.

So, let's first evaluate it at e to the 3. So that's 15 times the natural log of the absolute value of e to the 3rd power minus 15 times the natural log of the absolute value of e.

So, what does this simplify to? The natural log of e to the 3rd power. What power do I have to raise e to get to e to the 3? Well, that's just going to be three. And then the natural log of e—what power do I have to raise e to get e? Well, that's just one.

So, this is 15 * 3 minus 15. So, that is all going to get us to 30, and we are done: 45 minus 15.

More Articles

View All
My Coffee Company Is Going Broke
What’s up guys, it’s Graham here. So this is a video I’m certainly not happy about making, but since I started this channel with the sole purpose of being as open and transparent as possible, I think I owe it to you to explain what’s going on and bring yo…
Your Family Tree Explained
This is you, this is your family tree and this is your family tree explained. You have parents, and your parents have parents. These are your grandparents, who also have parents - your great grandparents. Keep adding parents, keep adding “greats.” For eve…
Charlie Munger: How to Invest for 2021
I remember that I did not make my fortune, such as it is, by predicting macroeconomic changes better than other people. What Bubba and I did was we bought things that were promising, and then we just—sometimes we had a tailwind from the economy and someti…
Introduction to passive and active transport | High school biology | Khan Academy
Let’s say that you have decided to go canoeing, and right over here this is a top view of our river. Right here, this is our river, and let’s say that the current of the river is going towards the right. So there are two different directions that you cou…
15 Ways to Hack Your Brain to Break Bad Habits
How many times have you tried to break a bad habit? 90% of people fail when they first start trying to break their bad habits, and it’s because they’re trying to break it in all the wrong ways. Habits are hardwired into your brain, and they have to be bec…
Daily Homeroom: Congratulations Class of 2020!
Hi everyone! Welcome to Khan Academy’s daily homeroom live stream. For those of you all who do not know what this is, this is something that we thought of when we started seeing mass school closures. We know that people are going to be at home, socially d…