yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Linear vs. exponential growth: from data | High School Math | Khan Academy


3m read
·Nov 11, 2024

The number of branches of an oak tree and a birch tree since 1950 are represented by the following tables.

So for the oak tree, we see when time equals 0 it has 34 branches. After three years, it has 46 branches, so on and so forth.

Then for the birch tree, they give us similar data. At the beginning, it has eight branches, in 10 years it has 33 branches, and they give us all of that.

What I want to think about in this video is how we should model these. If we want to model these with functions, the choices we'll give ourselves—there are other options, but the choices we'll give ourselves in this video—are linear and exponential functions.

Which of these are going to be better for modeling the data?

So let's first look at the oak tree. The key realization is whenever I have a fixed increase in time—each of these steps is plus three years—what happens to my number of branches? Is it going to be a fixed change, in which case a linear model might be good, or is it going to be a change that's dependent on where we were?

What am I talking about? So, 34 to 46 that is +12. 46 to 59 is +13. 59 to 70 is +11. 70 to 82 is +12.

At first, you might think, "Well, this isn’t an exactly fixed change." These numbers seem to average right around 12, but when you're looking at real-world data, you're never going to get something exact. The models are just going to give us a good fit, a good approximation of the behavior of the number of branches over time.

For me, this is pretty close to a constant 12 branches a year, so I would construct a linear model here. I would say branches as a function of time. Let me be clear: this isn't 12 branches per year; this is 12 branches every 3 years.

This was 13 branches over three years; this was 11 branches every 3 years. But we're going to average 12 branches over three years.

So, the number of branches we have—we're going to start at 34 branches, and then plus 4 branches every year. Here, you could test this out. B of 0 is going to give us 34 branches. B of 12, let's just really test out the extreme part of the model, B of 12, is going to be 34 + 48, which is equal to 82.

So this model works quite well. It's going to have a couple of places where it's not exactly fitting the data, but it fits it quite well.

So this is a linear model. Now let's look at the birch tree. Time equals zero, so fixed change in time—let me—not layer all right, so we have a fixed change in time. Every time we are moving into the future a decade, let's see our change in branches.

We go from 8 to 33, so what is that? That is +25 branches. Then we go from 33 to 128. Well, that’s way more than 25 branches.

That’s going to be what—less than five less than 100, so that's plus 95 branches. So this clearly is not a linear model.

Let's think in terms of an exponential model. How much do we have to multiply to go from—did I do that right? 128 minus—yeah, if it was 133, then it would be 100, and then it's five less than that, yep.

Okay, so now let's think about it in terms of an exponential model. In an exponential model, we care about what we have to multiply for each step.

So, if we have a constant step in time, what do we multiply for how much we increase our branches? To go from 8 to 33, that’ll be approximately—it's going to be approximately four. It’s going to be a little bit more than four.

33 to 128, well that’s going to be a little bit less than four, but it’s approximately four. 33 * 4 would be 132, so we're close. 128 to 512, that’s exactly four, right?

That’s exactly—120 * 4 is 480 + 32, yep, that is exactly four. So times four.

It looks like we keep multiplying by four every 10 years that go by.

One way to think about it is we could say here B of T, the branches of T, our initial condition, our initial state is eight. Now, we could say our common factor is four.

But, if we want T to be in years, well, every 10 years we multiply by a factor of four. T has to go to 10 before we increase the exponent to one or has to go to 20 until this exponent becomes two.

So, 8 * 4 to the T over 10 power seems like a pretty good model. You could even verify this for yourself if you like.

Try out what B of 30 is going to be. B of 30 would be 8 * 4 to the 30 / 10 to the 3 power.

What is that going to be? That’s going to be 4. The 3 is 64. 64 * 8 is—it's 480 + 32. It is 512.

So, once again, this exponential model—this exponential model for the data does a pretty good job.

More Articles

View All
Bill Ackman: How to Get RICH During Inflation (RARE New Interview)
Again, my view is inflation, or kind of the house view, is inflation is going to be persistently higher. That can happen in the very short term, like literally weeks. I think the structural forces have changed. Billionaire investor Bill Amman just issued …
People Don't See It - Anthony Hopkins On The Illusion Of Life
I had one moment when I decided to change my life. When I was a little boy, I dreamed of where I am now, and I remember saying to my father, “One day I’ll show you.” Certain moments in our life, we get little signals, little flashes. I may have had a visi…
Phishing attacks | Internet safety | Khan Academy
Let’s say you get an email like this where it looks like it is from PayPal. It says “response required” really big, so this is a little bit scary. It says, “Dear you, we emailed you a little while ago to ask you for your help resolving an issue with your …
My $5 Million Dollar Investment That Makes $550 Per Day
What’s up, you Graham? It’s guys here, so let’s finally talk about one of the most requested topics here in the channel, and that would be a complete breakdown of my five million dollar stock market portfolio. Exactly what I’m invested in and my strategy …
Sexual Satisfaction in the 21st Century | Original Sin: Sex
Looks okay. Everybody knows that I am speaking explicitly, and I don’t mince words. What has changed to the advantage is that people are more sexually networked— not enough yet, but more. Sexually different women have heard the message that a woman is to…
Why I Don’t Feel Guilty for Busting Wildlife Traffickers | Nat Geo Live
(Onkuri speaks) Government agencies in many parts of the world either don’t know much about the problem of wildlife trafficking or they might be understaffed, they might be under-trained, they might be under-equipped. So, we go in to help them and supple…