yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Linear vs. exponential growth: from data | High School Math | Khan Academy


3m read
·Nov 11, 2024

The number of branches of an oak tree and a birch tree since 1950 are represented by the following tables.

So for the oak tree, we see when time equals 0 it has 34 branches. After three years, it has 46 branches, so on and so forth.

Then for the birch tree, they give us similar data. At the beginning, it has eight branches, in 10 years it has 33 branches, and they give us all of that.

What I want to think about in this video is how we should model these. If we want to model these with functions, the choices we'll give ourselves—there are other options, but the choices we'll give ourselves in this video—are linear and exponential functions.

Which of these are going to be better for modeling the data?

So let's first look at the oak tree. The key realization is whenever I have a fixed increase in time—each of these steps is plus three years—what happens to my number of branches? Is it going to be a fixed change, in which case a linear model might be good, or is it going to be a change that's dependent on where we were?

What am I talking about? So, 34 to 46 that is +12. 46 to 59 is +13. 59 to 70 is +11. 70 to 82 is +12.

At first, you might think, "Well, this isn’t an exactly fixed change." These numbers seem to average right around 12, but when you're looking at real-world data, you're never going to get something exact. The models are just going to give us a good fit, a good approximation of the behavior of the number of branches over time.

For me, this is pretty close to a constant 12 branches a year, so I would construct a linear model here. I would say branches as a function of time. Let me be clear: this isn't 12 branches per year; this is 12 branches every 3 years.

This was 13 branches over three years; this was 11 branches every 3 years. But we're going to average 12 branches over three years.

So, the number of branches we have—we're going to start at 34 branches, and then plus 4 branches every year. Here, you could test this out. B of 0 is going to give us 34 branches. B of 12, let's just really test out the extreme part of the model, B of 12, is going to be 34 + 48, which is equal to 82.

So this model works quite well. It's going to have a couple of places where it's not exactly fitting the data, but it fits it quite well.

So this is a linear model. Now let's look at the birch tree. Time equals zero, so fixed change in time—let me—not layer all right, so we have a fixed change in time. Every time we are moving into the future a decade, let's see our change in branches.

We go from 8 to 33, so what is that? That is +25 branches. Then we go from 33 to 128. Well, that’s way more than 25 branches.

That’s going to be what—less than five less than 100, so that's plus 95 branches. So this clearly is not a linear model.

Let's think in terms of an exponential model. How much do we have to multiply to go from—did I do that right? 128 minus—yeah, if it was 133, then it would be 100, and then it's five less than that, yep.

Okay, so now let's think about it in terms of an exponential model. In an exponential model, we care about what we have to multiply for each step.

So, if we have a constant step in time, what do we multiply for how much we increase our branches? To go from 8 to 33, that’ll be approximately—it's going to be approximately four. It’s going to be a little bit more than four.

33 to 128, well that’s going to be a little bit less than four, but it’s approximately four. 33 * 4 would be 132, so we're close. 128 to 512, that’s exactly four, right?

That’s exactly—120 * 4 is 480 + 32, yep, that is exactly four. So times four.

It looks like we keep multiplying by four every 10 years that go by.

One way to think about it is we could say here B of T, the branches of T, our initial condition, our initial state is eight. Now, we could say our common factor is four.

But, if we want T to be in years, well, every 10 years we multiply by a factor of four. T has to go to 10 before we increase the exponent to one or has to go to 20 until this exponent becomes two.

So, 8 * 4 to the T over 10 power seems like a pretty good model. You could even verify this for yourself if you like.

Try out what B of 30 is going to be. B of 30 would be 8 * 4 to the 30 / 10 to the 3 power.

What is that going to be? That’s going to be 4. The 3 is 64. 64 * 8 is—it's 480 + 32. It is 512.

So, once again, this exponential model—this exponential model for the data does a pretty good job.

More Articles

View All
Rob Riggle Ice Climbing in Iceland | Running Wild With Bear Grylls
BEAR GRYLLS: OK, Rob. Your front points– your crampons are your main weight-bearing things. Good lord. BEAR GRYLLS (VOICEOVER): Comedian Rob Riggle and I are in a race against time, searching to find a case of supplies before nightfall. But first, we’ve …
Magnet making Current - Smarter Every Day 16
Hey, it’s me, Destin. I’m in Baltimore. [Mascot blows raspberries] [Destin laughs] Thanks. [Music] So let’s say you want to make yourself smarter on electronics, but you’re not, uh… You’re not really swoofed on that kinda stuff. Oh, looky here, it’s the …
THE NO. 1 HABIT OF BILLIONAIRES RUN DAILY - TONY ROBBINS MOTIVATION
Let me ask you something: what would you do if you knew your success was inevitable? If you had absolute certainty in your future and could see the steps you need to take clearly, what would you focus on? What would your daily habits look like? Here’s th…
How to Solve the Scorpion Issue | Primal Survivor
Whoa, look at that! Look at that scorpion right there! There are over 1,700 types of scorpion, but the ones that can kill people live in the desert. I have experience with species like this and know how to avoid getting stung by careful handling. Wow, tha…
The Ultimate Conspiracy Debunker
The Internet is like a breeding ground for conspiracy theories. While some are just stupid and funny, others promote ignorance and an unhealthy distrust. So we went to the Kurzgesagt lab and developed a foolproof system to destroy not all but a lot of con…
How to Help Small Businesses During COVID-19 | Ask Mr. Wonderful #22 Kevin O'Leary & Maria Sharapova
I Mr. Wonderful here, and welcome to another episode of Ask Mr. Wonderful. Now, you know what I love to do time to time is to invite a guest onto the show to help me answer all of your questions. I’m always amazed by how many questions we get and where we…