yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding 1 on the number line


2m read
·Nov 10, 2024

I'm here at the Khan Academy exercise called "Find One on the Number Line," and they're asking us to do exactly that. It says move the dot to one on the number line, and it's a little interactive dot that I could move around. So let's think about how I would do it. I always encourage you to pause this video and see at least how you think about doing it, or put your finger on the screen where you think one is, and then we'll work through it together.

All right, so they've told us where zero is, and they've told us where seven fourths is. One thing I could do is I could say, "Well, how many of these equal spaces does it take me to get from zero to seven fourths?" So let's see, it's 1, 2, 3, 4, 5, 6, 7. If it takes seven equal spaces to get to seven fourths, that means that each of these spaces is one-fourth. Because then it would be one-fourth, two-fourths, three-fourths, four-fourths, five-fourths, six-fourths, and seven-fourths.

All right, we're making some good progress. So where would one be? Well, one would be four-fourths. So we would go one-fourth, two-fourths, three-fourths, and then four-fourths. So that's where one is. The important thing to realize is the only way we knew that each of these gaps, or each of these spaces from one hash to the next, the way that we knew that each of those is a fourth is by saying, "Hey look, seven of those equal spaces get us to seven fourths." So each of these must be a fourth. Therefore, four of those four-fourths would be equal to one.

Let's do another example. So here we said we're told to move the dot to one on the number line. So put your finger on where that would be on the screen, pause the video, and do that. All right, in some ways this is a little bit easier because they told us that going from zero to the next little cross or hash, I guess you could say, whatever you want to call these things, is one-sixth. So what is one? Well, one or one whole is six-sixths.

So this is one-sixth, two-sixths, three-sixths, four-sixths, five-sixths, and then six-sixths. So there we go, that is where one is on this number line.

More Articles

View All
What's Next After Bridgewater?
I was asked what am I going to do now that I’ve transitioned Bridgewater. Um, and how’s it, what’s the new activity for Ray Dalio, what’s he going to do? Um, first of all, what a journey it’s been! 47 years, it’s been fantastic, and I’m so excited to hav…
Explore the Hidden and Fragile World Inside Caves | Short Film Showcase
Oh [Music] my name is Nancy Ellen Bach. I am a second-generation caterer. I’ve been caving my entire life. I feel more at home underground than I do anywhere else. This is where I belong and I am a sustaining contributor of the Southeastern Cave Conservan…
Evaluating a source’s reasoning and evidence | Reading | Khan Academy
Hello readers. How do we know what is true and what isn’t? My mama always told me, “Don’t believe everything you read.” Just because someone took the time to write something down, send it off to be typeset, designed, and printed in a book, or published on…
Augustus becomes first Emperor of Roman Empire | World History | Khan Academy
We finished the last video in the year 40 BCE, where the year began with the Parthian invasion of Syria and the Eastern provinces of the Roman Republic. And really, is it an Empire, the Roman Republic, or the Roman Empire? But Mark Anthony, who was in co…
KVL in the frequency domain
As we do AC analysis and we do operations in the frequency domain, we need to bring along Kirchhoff’s laws so that we can make sense of circuits. So in this video, I’m going to basically show that Kirchhoff’s voltage law works in the frequency domain. Wh…
Transforming exponential graphs | Mathematics III | High School Math | Khan Academy
We’re told the graph of y = 2^x is shown below. All right, which of the following is the graph of y = 2^(-x) - 5? So there’s two changes here: instead of 2^x, we have 2^(-x) and then we’re not leaving that alone; we then subtract five. So let’s take them…