yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding 1 on the number line


2m read
·Nov 10, 2024

I'm here at the Khan Academy exercise called "Find One on the Number Line," and they're asking us to do exactly that. It says move the dot to one on the number line, and it's a little interactive dot that I could move around. So let's think about how I would do it. I always encourage you to pause this video and see at least how you think about doing it, or put your finger on the screen where you think one is, and then we'll work through it together.

All right, so they've told us where zero is, and they've told us where seven fourths is. One thing I could do is I could say, "Well, how many of these equal spaces does it take me to get from zero to seven fourths?" So let's see, it's 1, 2, 3, 4, 5, 6, 7. If it takes seven equal spaces to get to seven fourths, that means that each of these spaces is one-fourth. Because then it would be one-fourth, two-fourths, three-fourths, four-fourths, five-fourths, six-fourths, and seven-fourths.

All right, we're making some good progress. So where would one be? Well, one would be four-fourths. So we would go one-fourth, two-fourths, three-fourths, and then four-fourths. So that's where one is. The important thing to realize is the only way we knew that each of these gaps, or each of these spaces from one hash to the next, the way that we knew that each of those is a fourth is by saying, "Hey look, seven of those equal spaces get us to seven fourths." So each of these must be a fourth. Therefore, four of those four-fourths would be equal to one.

Let's do another example. So here we said we're told to move the dot to one on the number line. So put your finger on where that would be on the screen, pause the video, and do that. All right, in some ways this is a little bit easier because they told us that going from zero to the next little cross or hash, I guess you could say, whatever you want to call these things, is one-sixth. So what is one? Well, one or one whole is six-sixths.

So this is one-sixth, two-sixths, three-sixths, four-sixths, five-sixths, and then six-sixths. So there we go, that is where one is on this number line.

More Articles

View All
Marginal utllity free response example | APⓇ Microeconomics | Khan Academy
We are told that Teresa consumes both bagels and toy cars, and they tell us that the table above shows Teresa’s marginal utility from bagels and toy cars. The first question is, what is her total utility from purchasing three toy cars? So pause this video…
5 Investing Mistakes To Avoid In Your 20’s
What’s up you guys, it’s Graham here. So chances are if you’ve clicked on this video, you’ve clicked on it to make sure you’re not making any of these investing mistakes, which unfortunately I have some bad news for you. Like, no, for real, I actually do …
Visually dividing a whole number by a decimal
In this video, we’re going to see if we can compute what 3 divided by 0.75 is equal to. And I’ll give you a little bit of a hint before I tell you to pause the video. So let’s imagine three holes right over here. What if we were to think of these three w…
Weak acid–weak base reactions | Acids and bases | AP Chemistry | Khan Academy
Let’s say that HA represents a generic weak acid and B represents a generic weak base. If our weak acid donates a proton to our weak base, that would form A⁻ and HB⁺. To identify conjugate acid-base pairs, remember there’s only one proton, or one H⁺ diffe…
Vlog: The Ponzi Factor book update (Oct 2020)
Hello everyone, this is Ton again. I want to do a quick vlog about updates for the book. I know that a lot has happened this year, and I will address some of that in the update, but not everything because a lot of it’s still developing. But I do want you…
Converting a complex number from polar to rectangular form | Precalculus | Khan Academy
We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the ne…