yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding 1 on the number line


2m read
·Nov 10, 2024

I'm here at the Khan Academy exercise called "Find One on the Number Line," and they're asking us to do exactly that. It says move the dot to one on the number line, and it's a little interactive dot that I could move around. So let's think about how I would do it. I always encourage you to pause this video and see at least how you think about doing it, or put your finger on the screen where you think one is, and then we'll work through it together.

All right, so they've told us where zero is, and they've told us where seven fourths is. One thing I could do is I could say, "Well, how many of these equal spaces does it take me to get from zero to seven fourths?" So let's see, it's 1, 2, 3, 4, 5, 6, 7. If it takes seven equal spaces to get to seven fourths, that means that each of these spaces is one-fourth. Because then it would be one-fourth, two-fourths, three-fourths, four-fourths, five-fourths, six-fourths, and seven-fourths.

All right, we're making some good progress. So where would one be? Well, one would be four-fourths. So we would go one-fourth, two-fourths, three-fourths, and then four-fourths. So that's where one is. The important thing to realize is the only way we knew that each of these gaps, or each of these spaces from one hash to the next, the way that we knew that each of those is a fourth is by saying, "Hey look, seven of those equal spaces get us to seven fourths." So each of these must be a fourth. Therefore, four of those four-fourths would be equal to one.

Let's do another example. So here we said we're told to move the dot to one on the number line. So put your finger on where that would be on the screen, pause the video, and do that. All right, in some ways this is a little bit easier because they told us that going from zero to the next little cross or hash, I guess you could say, whatever you want to call these things, is one-sixth. So what is one? Well, one or one whole is six-sixths.

So this is one-sixth, two-sixths, three-sixths, four-sixths, five-sixths, and then six-sixths. So there we go, that is where one is on this number line.

More Articles

View All
This TRANSPARENT ENGINE is Fascinating (How Engines Work) - Smarter Every Day 292
Where should the camera be? Oh, wherever. [Smashed the Gas] HOLY…. ENGINE ROARS Hey, it’s me, Destin. Welcome back to Smart Every Day. We have explored internal combustion engines on this channel, and I think they’re amazing. In the past, we visited a You…
Unicorn FARTS on Your LIPS ?? -- LÜT #23
A telephoto lens with the tripod for your iPhone and soap shaped like a piece of poop. It’s episode 23 of LÜT. Wake up in your warm Nintendo knee-high socks and put on your fancy superhero bow-tie, along with these sunglasses from Spencer’s with a neat ha…
Steve Varsano featured by Business Jet Traveler August 2015
With the cost of pre-owned jets coming down, this is an opportune time for business ship travelers to consider moving up to full ownership of an aircraft. We spoke to some industry insiders about this value proposition. Owning an aircraft is not for every…
Education as a force of convergence | Macroeconomics | Khan Academy
We talked about the dissemination of information being a force of convergence on the global scale, but what about on the individual scale? When we’re talking about knowledge dissemination on an individual scale, we’re really talking about education on som…
Dividing by 0.1 and 0.01
Let’s say we’re trying to figure out what 2 divided by 1⁄10 is. So, pause this video and see if you can have a go at that. All right, now there’s a couple of ways that we could approach this. We could just try to think of everything in terms of tenths si…
Second derivatives | Advanced derivatives | AP Calculus AB | Khan Academy
Let’s say that Y is equal to 6 over x squared. What I want to do in this video is figure out what is the second derivative of Y with respect to X. If you’re wondering where this notation comes from for a second derivative, imagine if you started with you…