yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Ridiculously Easy DIY Light Strips! (no soldering)
I want to change my bathroom from this to this. The problem is I want it to not cost a lot, be high quality, and be easy. I mean, is that even possible? Well, after trying out many different options and almost failing multiple times, I finally found a gre…
Molecular evidence for evolutionary relationships examples | High school biology | Khan Academy
An investigation was carried out on four different plant species to determine which of three species was most closely related to an unknown plant species. The results of the investigation are shown in the data table below. Which plant species appears to b…
Trig limit using pythagorean identity | Limits and continuity | AP Calculus AB | Khan Academy
Let’s see if we can find the limit as theta approaches 0 of ( \frac{1 - \cos(\theta)}{2 \sin^2(\theta)} ). And like always, pause the video and see if you could work through this. Alright, well our first temptation is to say, well, this is going to be th…
This Plan to Save a Rare Albatross From Extinction Just Might Work | National Geographic
There’s a place called the Pyramid Tatara Khoikhoi, yeah, off the Chatham Islands. This one rock basically is the only place in the world where this exceptionally beautiful, extremely rare bird breeds. The entire global population of 5,000 something pairs…
Safari Live - Day 170 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Well, good afternoon everybody once again and welcome aboard on the sunset Safari. My name is Ralph Kirsten and on the bush…
How I handle crises.
Overnight cost two nights. I mean, we’re selling the plane. Here’s the day in my life handling crisis and unexpected challenges. I arrive at the office early to get a head start. My first task is ensuring everything is in order. During our morning briefi…