yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Could Solar Storms Destroy Civilization? Solar Flares & Coronal Mass Ejections
The Sun, smooth and round and peaceful. Except when it suddenly vomits radiation and plasma in random directions. These solar flares and coronal mass ejections, or CMEs, can hit Earth and have serious consequences for humanity. How exactly do they work? H…
Canceling zeros when dividing | Math | 4th grade | Khan Academy
Let’s solve 350 divided by 50. So one way to think about this is if we had 350 of something, let’s say something delicious like brownies. If we had 350 brownies and we were dividing them into groups of 50, how many groups of 50 could we get? Well, one ide…
‌‌
Hey, Vsauce Michael here, coming to you from my hotel room in London with a little camera that I taped to a bunch of furniture I stacked up. Which is better than nothing, and as you can tell from the title of this video, it’s also what we’re going to dis…
Queens of the High Seas | Podcast | Overheard at National Geographic
Did you ever play a video game that sucked you in and took over your life? I mean, if you have, you can relate, but if you haven’t, it’s similar to that feeling of reading an amazing book and staying up late to read just one more chapter. And then before …
Extraneous solutions of radical equations | Mathematics III | High School Math | Khan Academy
Let’s say we have the radical equation (2x - 1 = \sqrt{8 - x}). So we already have the radical isolated on one side of the equation. We might say, “Well, let’s just get rid of the radical; let’s square both sides of this equation.” So we might say that …
Free Will is Incoherent
In this video, I’ll explain why libertarian free will is, at best, meaningless and, at worst, incoherent. By the way, if your worldview depends on its existence, your boat is leaking badly. According to a naturalistic worldview, here’s a rough sketch of …