yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Interpreting motion data | Physics | Khan Academy
Let’s learn about position time graphs and position time tables to analyze motion. Let’s start by considering a car going at a constant velocity. To create a position timetable, let’s take snapshots of it at, say, every five seconds. So here we go, boom! …
15 Ways To ADOPT a RICH MINDSET
Becoming rich is not just about getting a new job, moving to another city, or investing in tech and cryptocurrency. But becoming wealthy requires more than a change in financial habits; it also requires a change in mindset. If your mind isn’t geared towar…
Encountering a Blind Worm Snake | Primal Survivor: Escape the Amazon
[Music] I’m losing daylight. This is an expanse of grassland, and it has what I need for a shelter: all this grass that I’m gonna cut down. I’m gonna either turn it into my bed or use it for my roof. It’s the rainy season, which means you better count on …
Three digit addition word problems
We’re told the table gives the amounts of materials that are recycled. So we have the different materials here, and then it gives the various amounts. How many kilograms of paper and aluminum did Aya recycle? So pause this video and see if you can figure …
14 minutes of more useless information..
[Music] As I was getting ready to go out the other day, I realized I couldn’t button my pants up all the way. I realized I was gravitationally challenged and that I had been growing in all the wrong directions. So I started doing what any reasonable perso…
What is a main idea? | Reading | Khan Academy
Hello readers! Today I’m in this peaceful forest to tell you all about the skill of figuring out the main idea of a text. Say, what’s the big idea? Yes, exactly! Wait, what? Oh, hello squirrel! You heard me! Big legs, what’s the big idea with you tromping…