yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Finding inverses of rational functions | Equations | Algebra 2 | Khan Academy
All right, let’s say that we have the function f of x and it’s equal to 2x plus 5 over 4 minus 3x. What we want to do is figure out what is the inverse of our function. Pause this video and try to figure that out before we work on that together. All righ…
The Most-Photographed Toilet In New Zealand
Come with me as I poop in New Zealand’s most photographed public toilet, located in Kawakawa, near the top of the North Island. The Hundertwasser toilets are the final and only Southern Hemisphere project from reclusive artist Friedensreich Hundertwasser.…
Can Money Buy Happiness? Yes, According to Philosophy & Science
Some people claim that money is the root of all evil, pointing at the enormous amounts of violence humanity imposes on itself motivated by acquiring it. Others argue that not money but the lack of money is the root of evil, as people, out of fear of being…
Distance and displacement introduction | One-dimensional motion | AP Physics 1 | Khan Academy
So let’s say we have a sheep and it is hungry. So that is my sheep, my best quick drawing of a sheep. It is just following the grass wherever it finds good grass to eat. In pursuit of tasty grass, it first goes 10 kilometers to the east, 10 kilometers ea…
Visualizing the COVID-19 Tragedy - 360 | National Geographic
As a visual artist, I couldn’t let this happen. When words go unheard and numbers get too large, so they’re easy to dismiss, art has to take the lead. And so I wanted to use art to make the number comprehensible. White is important; white is the color of …
Africa's Mightiest Meat Eaters | Meet the Lions of Animal Kingdom | Magic of Disney's Animal Kingdom
At Disney’s Animal Kingdom theme park, day dawns for Africa’s mightiest meat eaters. Alright, are you ready to shift 1.2 line on show? Have a great day. Three majestic lions rule this savanna. You normally see them walk their whole perimeter and set mark…