yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Voter turnout | Political participation | US government and civics | Khan Academy
What we’re going to talk about in this video is voter turnout, which is a way of thinking about how many of the people who could vote actually do vote. It’s often expressed as a number, as a percentage, where you have the number who vote over the number o…
What You Try to Control, Controls You | The Paradox of Control
Once upon a time, in the tropics, there was a man who lived near a river that often flooded during the rainy season. So, every year, he would build a dam trying to control the floodwaters and protect his home and property. Every year he’d put great effort…
The pre-equilibrium approximation | Kinetics | AP Chemistry | Khan Academy
The pre-equilibrium approximation is used to find the rate law for a mechanism with a fast initial step. As an example, let’s look at the reaction between nitric oxide and bromine. In the first step of the mechanism, nitric oxide combines with bromine to…
My Thoughts On REAL ESTATE, INVESTING & HOW TO SUCCEED In 2021 | Kevin O'Leary & Barbara Corcoran
I don’t think these commercial properties are going to do well at all. In fact, I think they’re going to lose a substantial portion of their value over the next six months to a year. We have companies where sales are down, but cash flow is up. Now, how di…
why you understand English but CAN'T speak fluently
As you can probably tell from my accent and from my grammar mistakes, I’m not a native English speaker. I became fluent in English by watching YouTube videos and practicing by myself, and I always get comments like, “I can understand you, but I cannot tal…
PEOPLE WON'T WORK IN WAR-TORN CITIES
The economies change radically. The problem with saying everybody has to work in the office is you won’t be able to hire the best talent. When we went out for financial services people in our operating company, the best talent told us, “If I have to come …