yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Ron Howard and Brian Grazer Talk 'Genius' | National Geographic
I’m Ron. I’m Brian, and we’re here to talk to you about National Geographic’s first scripted show on genius. We’re focusing on Albert Einstein: 10 episodes that encompass his entire life. We, as contemporary people in this contemporary civilization that …
Comic-Con WRAP UP: From The Wackygamer Podcast!
We’re here to talk about Comic-Con. What to Comic-Con? Me a lot fun! We wanted to tell you what our favorites, and this favorites, this did spray. I think this favorites is a word, we’re gonna stick with it. Alright, I think my number one favorite—what w…
Misnomers
Hey Vsauce, Michael here. I’m sorry. Look, I didn’t name myself, but apparently Michael is the ninth most disliked baby name for a boy - according to a survey by BabyNameWizard.com. At least it didn’t top the charts like the rhyming ‘a den’ names - Jayden…
Exploring Ciudad Perdida | Lost Cities With Albert Lin
[music playing] ALBERT LIN: It’s literally a city in the clouds. Maybe those Spanish stories weren’t just legends because that’s what a real lost city looks like. HELICOPTER PILOT: [inaudible] 1 0 1 2. ALBERT LIN: That’s Ciudad Perdida, the Lost City. …
Frank Drake’s Cosmic Road Map | Podcast | Overheard at National Geographic
It’s Halloween 1961. Ten of the world’s leading scientists have found their way to a remote spot in the Allegheny Mountains. They’re there in secret to talk about searching for aliens. Okay, hang on, this isn’t the beginning of a Twilight Zone episode. Th…
Your Top Questions Answered: Part 1
What should you do if you want to be very successful and have a very, very big impact on the world? Make your work and your passion the same thing. Don’t forget about the money part, but do it in a way that you’re going to, uh, produce enough money that y…