yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Chasing Microbes: The Secret Superheroes of Our Planet | National Geographic
There are places all over the world where methane is coming out of the seafloor. This is kind of concerning because methane is a very strong greenhouse gas. We think a lot about carbon dioxide heating up the planet, but methane is about 25 times worse. An…
Campbell Addy creates Decolonise My Tongue with Love | Photographer | National Geographic
I Love Campbell, the exhibition, and the video is about the first time people fell in love. I’m really excited. I’ve never done a film, any video footage here in Ghana. Right, Fidel. Yeah. Wait one sec, can we get the Bolex? I wanna try something. Hello…
The Shadow Of Toxic Positivity
Negative thinking can really impede one’s ability to lead a fulfilling life. When everything is wrong with the world and nothing is worth pursuing; what’s the point in life, really? Even though a positive mindset is generally more preferable than a negati…
Can You Recover Sound From Images?
This video was filmed without sound. Is it possible to use only these images to reconstruct the sound? That is, can you hear pictures? In this video, I’m gonna try to demonstrate that it’s possible to get sound from pictures, but it’s not gonna be easy, s…
REVIEWING MY 2008 LOTUS EXIGE S240
What’s up you guys? My name is Graham, and this is a review of the 2008 Lotus Exige S 240. By the way, just a quick background: Lotus is the brand that got me into cars to begin with. Before I saw a Lotus, I didn’t give a [ __ ] about cars. Well, my first…
How the Inverted Yield Curve Reliably Predicts Recessions.
It’s what everybody’s talking about. Recession fears are rising. The spread between the two-year and the 10-year bond officially inverted for the first time since 2019, a sign that a recession could be on the horizon. It’s predicted every recession, reces…