yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Find Your Bliss in Patagonia | National Geographic
Every year, about 100,000 visitors head to a remote location known as the end of the world: it’s Torres del Paine National Park in Chile’s Patagonia region. Here, adventurers find bliss amongst the dramatic terrain that includes glaciers, fjords, and moun…
Khan for Educators: Basic site navigation
Hi, I’m Megan from Khan Academy, and in this video, we’ll browse through Khan Academy together. We’ll start by logging into the platform and then go through some of the key navigation features together. To get started, go to khanacademy.org and click “Te…
Long run supply curve in constant cost perfectly competitive markets | Microeconomics | Khan Academy
[Man] Alright, now let’s dig a little bit more into analyzing perfectly competitive markets, and in particular, we’re gonna focus on the long run. Remember, the long run is the time span where firms can enter and exit the market. Or, another way to think …
The impact of constitutional compromises on us today | US government and civics | Khan Academy
When you first learn about the Constitutional Convention in 1787 and the debates and the compromises, it’s easy to assume that, okay, that’s interesting from a historical point of view, but how does it affect me today? Well, the simple answer is it affect…
Introduction to life insurance | Insurance | Financial literacy | Khan Academy
So let’s talk a little bit about what’s probably not your favorite subject. It’s definitely not mine, and that is death. Uh, and uh, it’s not something a lot of us think about. I remember when I was a kid and I used to see these ads on TV for life insuran…
Grand Canyon Adventure: The 750-Mile Hike That Nearly Killed Us (Part 1) | Nat Geo Live
What we’re gonna do tonight, Kevin and I are gonna take you on an unusual and somewhat remarkable journey through a remarkable place, the Grand Canyon. But before we do that, we felt it’s important to get a little bit of an idea of how we know each other,…