yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
The Stickiest *Non-Sticky* Substance
This is one of the strangest materials I have ever seen. It is not sticky at all. You can’t even stick regular tape to it. But if I drape it over this tomato, it holds it up, unless you turn it upside down, in which case it just falls off. Now does it onl…
Holland vs the Netherlands
Welcome to the Great nation of Holland: where the tulips grow, the windmills turn, the breakfast is chocolatey, the people industrious, and the sea tries to drown it all. Except, this country isn’t Holland. It’s time for: The Difference Between Holland, t…
Catch of the Week - Hooked on a Monstah | Wicked Tuna
All right, behind the boat, you can see we’re right in the whales, circling us like jaws. It’s really good time for some June. It’s embark J. Yeah, we run real, real, real. You gotta pull it all the way, work it down. All right guys, you keep going. This…
Chromosome pairs | Inheritance and variation | Middle school biology | Khan Academy
[Instructor] - Hi, everyone. Today, we’re gonna talk about chromosome pairs. But first, I’ve got a question for you. Between a black mulberry plant, a Guinea pig, and a human being, which organism do you think has the most chromosomes? The mulberry plan…
Why following your dreams is ruining your life
Okay. So, I’ve been wanting to make this video for a long time, and I’m still not totally confident that I have the exact words that I want to say, but I am pretty passionate about this concept. And I think there is sort of a toxic narrative in the world …
Homeroom with Sal & Anant Agarwal - Thursday, June 24
Hi everyone, Sal Khan here. Welcome to the Homeroom live stream! We have a very exciting guest today: Anant Agarwal, founder and CEO of edX. Sorry, I’m messing with my video settings probably at the exact wrong moment, but before I get into that, I will g…