yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Horizontal & vertical lines | Mathematics I | High School Math | Khan Academy
What is the equation of the horizontal line through the point (-4, 6)? So, let’s just visualize this. Once you get the hang of it, you might not have to draw a graph, but for explanatory purposes, it might be useful. So, (-4, 6), so that’s going to be i…
Renovation Day 35: Home Depot vs Lowes price match! And other ways to save money!
What’s up you guys, it’s Red here. So I almost thought, I know I said that in the last video, but now it’s almost closer to being almost done. There are so many little things that are driving me absolutely crazy that aren’t done yet, but because I think i…
The Dark Night of the Soul (Losing Who We Thought We Were)
The endurance of darkness is preparation for great light. John of the Cross. Most of our lives are ongoing pursuits of sensory pleasures. And every time we think that we’ve found lasting fulfillment, it doesn’t take long before we need more gratification…
Democracy: Structural defects
When a person thinks about the idea of a stateless society, it’s natural that they do so in relation to a political order they have firsthand experience of: a representative democracy. Usually, there’s a widespread belief that although this kind of democr…
What Happens if Earth Suddenly Stops Rotating? #kurzgesagt #shorts
What happens if the Earth suddenly stops rotating? A thing that isn’t attached to its surface remains at its initial speed—not just cars, buildings, and people, but also water and our atmosphere—causing giant tsunami waves and global windstorms. Areas ne…
Fireside Chat with Tanay Tandon of Athelas
So I would love to welcome Tenae Tandon onto the stage. Uh, Tenae is the CEO and founder of Othellis, a digital health company that you’re going to be hearing all about. YC first met Tenae when he was 17 years old when he first won YC’s first hackathon. N…