yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Amelia's Turkey Tail Tea | Live Free or Die: How to Homestead
Either these are turkey tail mushrooms. So, turkey tail is one of our favorites. They are easy to identify. Pick a piece and look on the underside; if the underside has pores in it, which are lots and lots of teeny tiny holes, then it’s turkey tail. The t…
Triple bonds cause linear configurations | Organic chemistry | Khan Academy
I want to do a quick clarification on the video on alcohols. In one of the videos, I gave this example of this alkanol right over here. It has a triple bond between the five and six carbons, and I just want to clarify that in reality, it would not ever be…
How to buy a $50,000,000 private jet!
Hey Steve, I just expanded my business to South America and I’ve got 50 million to spend on the jet. How many people do you want to carry? Uh, just me and six of my girlfriends. Six of your girlfriends? You don’t have enough money to spend on the jet l…
What If The Earth Stopped Spinning?
Hey, Vsauce. Michael here. The Earth is spinning and we are spinning along with it. But what if the Earth suddenly stopped spinning? Well, first of all, you would gain weight. But that would be the least of your worries. The spin of our planet is importan…
What If Everyone JUMPED At Once?
Hey, Vsauce. Michael here. And what if every single person on Earth jumped at the exact same time? Could it cause an earthquake or would we not even be able to tell? Well, first things first, let’s talk about the Earth’s rotation. The Earth spins, that’s …
Curvature formula, part 1
So, in the last video, I talked about curvature and the radius of curvature. I described it purely geometrically, where I’m saying you imagine driving along a certain road. Your steering wheel locks, and you’re wondering what the radius of the circle that…