yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Safari Live - Day 69 | Nat Geo WILD
Well hidden at the moment, tucked away in the long grass, and you can see that one of the little cubs is suckling away. So, these are the four cubs that we saw playing with the game drive blanket not all that long ago, tugging it backwards and forwards an…
Modeling with multiple variables: Pancakes | Modeling | Algebra || | Khan Academy
We are told that Jade is making pancakes using flour, eggs, and milk. This table gives the cost per kilogram of each ingredient and the amount in kilograms that Jade uses. All right, the total amount Jade spends on ingredients is six dollars. Write an eq…
Slow-Mo Non-Newtonian Fluid on a Speaker
So today I am going to do everyone’s favorite non-Newtonian experiment. I am going to put this corn starch and water solution on this speaker, but I want to do this scientifically. So I am shooting it with a high-speed camera, and I am going to vary the …
Shower Thoughts: True Facts That Sound Completely Made up
Have you ever paused to think about how one of the most famous sentences of all time doesn’t make grammatical sense? Well, because we all apparently heard it wrong and continue to say it wrong, according to the man himself, Neil Armstrong, what he did say…
Sad, Bored, Anxious? Maybe You've Got Weltschmerz
Watching Disney movies when we’re young teaches us that good always prevails and that we all live happily ever after. But when we’re confronted with the real world, we see that this mechanism isn’t always in effect. Looking at all the suffering, the injus…
Khan Academy's Official Digital SAT Prep Webinar
Good afternoon, and welcome to preparing your school for the digital SAT webinar. We are so happy that you’re able to join us this afternoon to learn more about the new digital SAT and how KH Academy can help support your teachers, students, and community…