yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Amazon CEO Jeff Bezos on The David Rubenstein Show
You have become the wealthiest man in the world. It was fine being the second wealthiest person in the world; that actually worked fine. What propelled you to sell things more than books? I thought to myself, we can sell anything this way. Who came up wit…
Meth Hidden in a Spare Tire | To Catch A Smuggler
[suspenseful music] [dog panting] [power tool whirring] Oh yeah, it’s a pretty big load. Yeah. OFFICER ON RADIO 1: [inaudible] OFFICER ON RADIO 2: Copy, thank you. This is a pretty significant load, right here. Roll it over this way. Yeah, they’…
How I Meditate
I do Transcendental Meditation, um, and when I and there are different that’s a mantra-based vegetation. So anyway, here’s how it works. There are met different Mantra based presentations, but the process is a real simple process. There’s a, um, it’s call…
Quadratic approximation formula, part 2
Line things up a little bit right here. All right, so in the last video, I set up the scaffolding for the quadratic approximation, which I’m calling q of a function, an arbitrary two-variable function which I’m calling f. The uh, the form that we have rig…
Sign convention for passive components | Electrical engineering | Khan Academy
Today we’re going to talk about the sign convention for passive components. It’s a big mouthful, but it’s a fairly simple idea. So first of all, let’s look at this word: passive. Passive is the way we describe components that do not create power or compo…
Death
To everything there is a season, a time to be born and a time to die. For some, it’s Grandma or Grandpa. For others, it’s Mom or Dad. For some, it’s a brother, a sister, a friend, or a lover. Whoever it is, whenever it is, one thing is for sure: at some p…