yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Developing an American identity, 1800-1848 | US history | Khan Academy
In this video, I want to take a look back at the period from 1800 to 1848, kind of from a bird’s eye view. This is a huge time in American history. In 1800, the United States was just a fledgling nation, less than 20 years out from winning its independenc…
Behind the Scenes with Ron Howard | MARS
Presented by Acura Precision Crafted Performance. Hello, I’m Ron Howard. I’m one of the executive producers of Mars, and in fact, I’m talking to you today from the set of Mars, the mini-series. Any story, buddy, name any true life adventure, is a story o…
Chernobyl - What It's Like Today
That is Chernobyl nuclear reactor number four. It melted down on April 26, 1986. So, what happened was so much heat was generated inside that reactor that it basically blew the top off, spreading radioactive isotopes throughout this whole surrounding area…
With Grace | Short Film Showcase | National Geographic
[Music] [Music] Thank you, thank you. [Music] Come on, I’ve been happening. Okay, okay. [Music] You can even take overnight. Sometimes a day can pass or two. Okay. Foreign [Music] Grace, so I went home to catch up some rest. Around 23 hours, I had a knock…
WHY IT'S BETTER TO BE SINGLE | STOIC INSIGHTS ON THE BENEFITS OF SINGLE LIFE | STOICISM INSIGHTS
Welcome back to Stoicism Insights, where we dive deep into the wisdom of the ancient Stoics to uncover timeless truths for modern living. Today we have something truly special in store for you. Have you ever wondered about the power of solitude, the freed…
My Recession Proof Investing Plan For 2020
What’s up you guys? It’s Grinding here. So if you’ve opened up your computer in the last week, which now that I’m thinking about it, actually you’re watching a YouTube video, so obviously you’ve opened up your computer or your phone to just be here listen…