yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
How to Be a Great Founder with Reid Hoffman (How to Start a Startup 2014: Lecture 13)
So when I looked through the syllabus to this class and thought about what I could possibly add that would be useful in addition to the very skills, one of the things I’ve been thinking about has been how do you think about yourself as a founder? How do y…
Lensa makes $1M/Day (& Steals Your Face)
By this point, there’s no doubt about it: artificial intelligence is taking over the mainstream, and people who know how to leverage this technology are getting insanely rich. Applications like Lensa AI and Don AI are literally flipping mobile apps like I…
Private vs first class.
If you had the choice between flying private or flying first class, which would you choose? Private, 100% of the time. Flexibility, security, safety, quality of life, time. You can leave when you want to go, what airport you want to go to and from. It’s …
I'm Quitting. My Last Video.
You know, I originally had something planned out for this video, but then I realized it. I may as well just speak from the heart. So, I think I owe it to everybody to explain what’s going on and why I’m going to be leaving YouTube. It sucks because, you …
Something Strange Happens When You Keep Squaring
Take the number 5 and square it, you get 25. Now take 25 and square it, you get 625. Square 625, and you get 390,625. Do you see the pattern? 5 squared ends in a 5, 25 squared ends in 25, and 625 squared ends in 625. So does this pattern continue? Well,…
LET NO ONE WORRY YOU | ALAN WATTS MOTIVATIONAL SPEECH
Let’s start by looking at what it means to find stillness within. Often we think that peace, real inner calm, is something we have to create by arranging everything in our world just so. Maybe it’s finding a quieter space, reducing the number of people ar…