yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Dividing a whole number by a decimal on a number line
[Instructor] What we want to do in this video is figure out what two divided by 0.4 is, or two divided by 4⁄10. So why don’t you pause this video and try to figure out what it is. And as a little bit of a hint, think about two on the number line and thi…
Master the skills of negotiating in everyday life | Daymond John | Big Think
I want people to take away from power so that their various different ways that they can apply negotiation to their life. I’m not necessarily talking about always, you know, this huge deal; it could be just getting your remote control away from your signi…
David Rusenko at Startup School 2012
Well, thanks for having me, guys. Uh, you can hear me all right? Cool. So, I wanted to start by just uh, going over the Weebly story a little bit, telling you uh, kind of how we got to where we got to today and some of the lessons we learned along the wa…
BREAKING: THE NEXT STIMULUS CHECK CONFIRMED | ALL DETAILS REVEALED
What’s up you guys? It’s Graham here. So, it’s that time again. The next stimulus package is underway, and now that time has come because we’ve just gotten an inside look into the new stimulus draft that was just released yesterday. Now we could dive into…
Principles for Success: “Struggle Well” | Episode 8
Principles for Success: An Ultra Mini-Series Adventure in 30 Minutes and in Eight Episodes Episode 8: Struggle Well, so far I described how I learned to confront my own realities, my problems, my mistakes, and weaknesses, and how I surrounded myself wit…
Why Working-Class Matter
That’s one of the things that’s really characteristic of working class jobs I think, much more so than more intellectually complicated abstract jobs. One of the things you have to be, you have to be a good person to be around to do well at a working class…