yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
The Threat of AI Weapons
I’ll explain more at the end, but let me set up this clip in five words: robot killers, Stephen Fry, watch. Autonomous weapons have been described as the third revolution in warfare after gunpowder and nuclear bombs. They could mount rapid devastating at…
The Power of Transportation | Origins: The Journey of Humankind
[music playing] [motor revving] JASON SILVA: What does it take to power a global civilization to connect billions of people across continents? It takes the power of transportation. From the beginning, speed and strength were paramount in the hunt, on the…
Crowd-funding: Tips
So, as some of you might know already, uh, I’ve been running a crowdfunding campaign to fund the production of the follow-up to my George or to help animation that I made last year. It’s in the final days of the campaign, so if you didn’t check it out alr…
Photographing the Wild Wolves of Yellowstone | Exposure
In Rogard Kipling’s The Jungle Book, he has a quote that says, “For the strength of the pack is the wolf, and the strength of the wolf is the pack.” Yellowstone lives and breathes wolves. In the last 20 years, I wanted to photograph them and bring that to…
The Side Effects of Vaccines - How High is the Risk?
Vaccines are celebrated for their part in fighting disease. But, a growing group of people seem to believe that they endanger our health, instead of protecting it. The Internet is full of stories about allergic reactions, the onset of disabilities, and ev…
Culinary Destinations | Epcot Becoming Episode 4 | National Geographic
Okay, perfect. The food should have a story. Something you remember for years to come. This is delicious. The creations of the chefs here at EPCOT represent the connecting of different cultures around the world. More than 40 food and drink spots offer uni…