yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponent equation using exponent properties


2m read
·Nov 11, 2024

So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equal to? So pause the video and see if you can figure out ( K ), and I'll give you a hint: you just have to leverage some of your exponent properties.

All right, let's work this out together. The first thing I'd want to do is be a little bit consistent in how I write my exponents. Here I've written it as ( -65 ) power, and here I've written it as a fifth root. But we know that the fifth root of something, we know that the fifth root of ( V )—that's the same thing as saying ( V^{\frac{1}{5}} ).

The reason I want to say that is because then I'm multiplying two different powers of the same base, two different powers of ( V ), and so we can use our exponent properties there. So this is going to be the same thing as ( V^{-65} ) times ( V^{\frac{1}{5}} ), which is going to be equal to ( V^{K} ).

Now, if I'm multiplying ( V ) to some power times ( V ) to some other power, we know what the exponent properties would tell us. I could remind us—I'll do it over here: if I have ( x^{a} \cdot x^{b} ), that's going to be ( x^{a + b} ).

So here I have the same base ( V ). Therefore, this is going to be ( V^{(-65) + \frac{1}{5}} ).

So ( V^{-65 + \frac{1}{5}} ) is going to be equal to ( V^{K} ).

I think you might see where this is all going now. So this is going to be equal to ( V ). Therefore, ( -65 + \frac{1}{5} ) is going to be equal to ( K ).

Calculating this gives us ( -\frac{325}{5} + \frac{1}{5} = -\frac{324}{5} ).

Now, all of this is going to be equal to ( V^{K} ), so ( K ) must be equal to ( -\frac{324}{5} ).

And we’re done! ( K ) is equal to ( -\frac{324}{5} ).

More Articles

View All
Bargaining for Boards | Yukon River Run
Well, we’re hoping to make 10, 12,000 after we sell all this stuff today. Then we’ll give that up; we’ll all have money to work on. Got all this lumber and the logs and all our gear. I think we’ll do good selling our stuff right here. Is the smartest thi…
Eric Migicovsky at Startup School SV 2014
Hi guys, um, it’s an honor to be here. I really appreciate you guys taking time out of your day to come listen to me. Um, I know that many of you may have heard about us when we launched on Kickstarter about two years ago. Um, I’m here to tell you a littl…
Comparing multi-digit numbers | Math | 4th grade | Khan Academy
Compare 98,989 and 98,899. So we want to compare these two numbers, and to do that, let’s first think about what these digits mean. What do these numbers actually mean? Looking first at our number on the left, we have a 9 all the way to the right, or in …
Which mechanical keyboard should you buy -The most aesthetic keyboard ever
So let’s start with the conclusion. Should you buy the IQNEX F96 mechanical keyboard? Even though they start from 199 dollars to 250 dollars, the answer is yes! I spent so freaking much time using keyboards, sitting on my desk, writing with my keyboard. S…
Transit of Venus! US Space & Rocket Center - Smarter Every Day 54
Hey, it’s me Destin. Welcome back to Smarter Every Day. Something cool happened on the way home from work today: Venus passed in front of the sun. Well, between us and the sun, I guess technically. I had this little camera with me, and I went to the US Sp…
Meme Culture: How Memes Took Over The World
Ah, here we go again. On the 1st of September 1939, Germany invaded Poland from the east, starting World War II. As you would expect, there is fear and panic throughout Europe. So, to calm the British population down and to prevent widespread panic, the w…