yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Proof: parallel lines have the same slope | High School Math | Khan Academy


3m read
·Nov 11, 2024

What I want to do in this video is prove that parallel lines have the same slope. So let's draw some parallel lines here. So that's one line, and then let me draw another line that is parallel to that. I'm claiming that these are parallel lines.

Now I'm going to draw some transversals here. So first, let me draw a horizontal transversal, just like that. Then let me do a vertical transversal, so just like that. I'm assuming that the green one is horizontal and the blue one is vertical. So we assume that they are perpendicular to each other, that these intersect at right angles.

From this, I'm going to figure out—I'm going to use some parallel line angle properties to establish that this triangle and this triangle are similar, and then use that to establish that both of these lines, both of these yellow lines, have the same slope.

So actually, let me label some points here. So let's call that point A, point B, point C, point D, and point E.

Let's see. First of all, we know that angle C D is going to be congruent to angle A E B because they're both right angles. So that's a right angle, and then that is a right angle, right over there.

We also know some things about corresponding angles for a transversal where a transversal intersects parallel lines. This angle corresponds to this angle if we look at the blue transversal as it intersects those two lines. And so they're going to be— they're going to have the same measure; they're going to be congruent.

Now, this angle on one side of point B is going to also be congruent to that because they are vertical angles, and we've seen that multiple times before. So we know that this angle, angle A B, is congruent to angle E C D. Sometimes this is called alternate interior angles of a transversal and parallel lines.

Well, if you look at Triangle C D and Triangle A B, we see they already have two angles in common. So if they have two angles in common, well, then their third angle has to be in common. This third angle is just going to be 180 minus these other two. So just like that, we notice we have all three angles are the same in both of these triangles—or they're not all the same, but all of the corresponding angles, I should say, are the same.

This blue angle has the same measure as this blue angle; this magenta angle has the same measure as this magenta angle; and then the other angles are right angles. These are right triangles here.

So we could say triangle A E B is similar to triangle D E C by angle-angle similarity. All the corresponding angles are congruent, so we are dealing with similar triangles.

We know similar triangles— the ratio of corresponding sides are going to be the same. So we could say that the ratio of, let's say, the ratio of B E to A E is going to be equal to the ratio between C E to D E. This just comes out of the similarity of the triangles C to D E.

Once again, once we establish these triangles are similar, we can say the ratio of corresponding sides are going to be the same. Now, what is the ratio between B E and A E? The ratio between B E and A E, well, that is the slope of this top line right over here.

We could say that's the slope of line A B. Remember, slope is when you're going from A to B; it's change in Y over change in X. So when you're going from A to B, your change in X is A E and your change in Y is B E, however you want to refer to it.

So this right over here is change in Y, and this over here is change in X. Well, now let's look at this second expression, C over D E. Well, this is going to be change in Y over change in X between points C and D.

So this is a slope of line C D. And so just like that, by establishing similarity, we were able to see the ratio of corresponding sides are congruent, which shows us that the slopes of these two lines are going to be the same, and we are done.

More Articles

View All
Lateral & total surface area of rectangular prisms | Grade 8 (TX) | Khan Academy
We’re asked what is the lateral surface area of the rectangular prism and then what is the total surface area of the rectangular prism. Pause this video, have a go at this before we do this together. All right, now let’s first focus on lateral surface ar…
Which mechanical keyboard should you buy -The most aesthetic keyboard ever
So let’s start with the conclusion. Should you buy the IQNEX F96 mechanical keyboard? Even though they start from 199 dollars to 250 dollars, the answer is yes! I spent so freaking much time using keyboards, sitting on my desk, writing with my keyboard. S…
Introducing Khanmigo for teachers
This is Conmigo, an AI-powered guide designed to help all students learn when subjects are giving them trouble. Conmigo can help. Kamika was fun and can transform learning into an adventure. Kanmigo is not just for students; teachers can use it too by tog…
The Nature of Nature | National Geographic
The ocean has been my passion since I was young. I used to dream of being Jacques Cousteau, exploring the seven seas with my team. But in just a few generations, the underwater world has changed dramatically. All over the planet, so many places are now vo…
The Crux Episode 3 | Full Episode | National Geographic
I was climbing so well and I was, like, in such a good position to get really good score. And I just was like, now I’m going to fall off like, that was perfectly average. You know, **** my life. Everyone wants to win. For the athletes that have lost the W…
Mobilizing the Masses | Photographer | National Geographic
People really want to know what it feels like to be a photographer, what it feels like to be sitting there in the stream when a bear comes walking in. I was cold, I was hungry, I was scared, I was excited. And so we started posting those stories, and it …