yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The van der Waals equation | Khan Academy


4m read
·Nov 10, 2024

We have so far spent many videos talking about the ideal gas law: that pressure times volume is equal to the number of moles times the ideal gas constant times temperature measured in Kelvin. What we're going to do in this video is attempt to modify the ideal gas law to try to take into account when we're dealing with real gases. Gases where the volume of the actual particles are worth considering; that we don't just say they're negligible compared to the volume of the container. Intermolecular forces are something that we would like to take into consideration.

So let's think about how we could modify this. To help us a little bit, I'm just going to solve for p. So, I'm going to divide both sides by volume. We can say pressure is equal to the number of moles times the ideal gas constant times temperature measured in Kelvin divided by volume.

So first, how would we adjust this if we want to take into account the actual volume in which the molecules can move around? Well, if we wanted to do that, we would replace this volume right over here with this volume minus the volume of the actual particles. So, what's the volume of the actual particles going to be? Well, it's going to be the number of particles times some constant based on how large each of those particles are, maybe on average. Let's just call that b.

So we could view this as a modified ideal gas law equation where now, all of a sudden, we are taking into account the fact that these particles have some real volume to them. But, of course, we also know it's not just about the volume of the particles; we also need to adjust for the intermolecular forces between the particles. We know that in many cases, those intermolecular forces are attractive forces and so they would take away from the pressure. Therefore, we need some term that accounts for that—a term that accounts for taking away the pressure due to intermolecular forces.

Now I know what some of y'all are thinking: do we always subtract? Might not there be some situations in which we actually have repulsive forces between particles and it would actually add to the pressure? There could be scenarios like that; you could imagine if they all have a strong negative charge, they want to get away from each other as far as they can, and that could actually add to the pressure. But in that situation, we could subtract a negative, and then that would be additive.

Now, how can we take this into consideration? We know from Coulomb's law that the force between two charged particles is going to be proportional to the charge on one particle times the charge on the other particle divided by the distance squared. Now, obviously, if we're dealing with a lot of particles in a container, we're not going to be able to think about the forces between any two particles.

But one way to think about it is in terms of how concentrated the particles are generally. So we're trying to think of a term that takes into account the intermolecular forces or how much we're reducing the pressure because of those intermolecular forces. Maybe that can be proportional to not just the concentration of the particles—and that would be the number of particles divided by the volume—but that times itself because we're talking about the interaction between two particles at a time, very similar to what we see in Coulomb's law.

Because the end of these really are just Coulomb forces. So this thing right over here is going to be proportional to the concentration times itself. Or we could maybe call this some constant for the proportionality times n over v squared, where a would depend on the attractive forces between gas particles.

What we have just constructed, and let me rewrite it again, this ideal gas equation—and actually, let me put this orange term back on the left-hand side—so if I write it this way: that pressure plus a times n over v squared is equal to n rt over the volume of our container minus the number of molecules we have times some constant b based on how large on average those molecules, or those particles, are.

This right over here is a pretty good compensating equation for when we're dealing with more real gases—ones that have intermolecular forces and one where the actual particles have volume. This actually does a pretty good job, and there's a name for it: it's called the van der Waals equation.

There are many different ways you might see it. You could see it written like this, or we could try to take this blue part and get it on the left-hand side so it really looks like what we saw at the top, where there it would be written as, and I'll write it actually this way: pressure plus some constant times the density squared—let me close that parenthesis—times the volume minus the number of molecules times some constant is going to be equal to nRT.

All of this looks really complicated, but at the end of the day, it is just our ideal gas law modified for intermolecular forces and the actual volume of the particles.

More Articles

View All
Adjectives and commas | Adjectives | Khan Academy
Hey Garans, hey Paige, hi David. Hey, so Paige, I went to the grocery store yesterday and I got this apple. Okay? I put it in the fridge, uh, and this morning when I opened the fridge, the apple was all like gross and sticky and mushy. I really want to w…
Why were the Mongols so effective? | World History | Khan Academy
The question before us today is why were the Mongols so effective? How do they manage to take an area starting around here and over the course of 20 years, during the reign of Genghis Khan, from about 1206 to 1227, expand from this little part of Siberia,…
Adding decimals with ones and tenths parts
Last video, we got a little bit of practice adding decimals that involved tths. Now let’s do slightly more complicated examples. So let’s say we want to add four to 5.7, or we could read the second number as 5 and 7⁄10. Pause this video and see if you ca…
Paying yourself first | Budgeting and saving | Financial Literacy | Khan Academy
You might have heard the term “paying yourself first,” and this just means putting your safety, your needs, especially your future needs, first before you think about other things. So let’s give ourselves an example. Let’s say that you want to buy a lapt…
Red Button: You Live, Blue Button: Everyone Might Live
Hello, good morning! Hi, it’s been a while since I made a video about green beard altruism. Let’s not bury the lead. But, uh, it’s going to take a while to get there. There’s a puzzle that’s been going around social media for a while and recently boiled …
Zeros of polynomials (multiplicity) | Polynomial graphs | Algebra 2 | Khan Academy
All right, now let’s work through this together. And we can see that all of the choices are expressed as a polynomial in factored form. And factored form is useful when we’re thinking about the roots of a polynomial, the x-values that make that polynomi…