yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (example 2) | Mathematics III | High School Math | Khan Academy


4m read
·Nov 11, 2024

  • So I have the polynomial ( p(x) ) here, and ( p(x) ) is being expressed as a fourth degree polynomial times ( (3x - 8)^2 ). So this would actually give you some, this would give you ( 9x^2 ) and a bunch of other stuff, and then you multiply that times this. It would actually give you a sixth degree polynomial all in all, but our goal is to find the ( x ) values where that makes ( p(x) = 0 ), or another way to find the roots or the zeros of this polynomial, and in particular, we're going to focus on the real zeros, the real roots of this polynomial. And like always, I encourage you to give a go at it, and then we'll do it together. Alright, let's tackle this.

So, the way I want to solve ( p(x) = 0 ). I want to solve ( p(x) = 0 ), and figure out what, and when I say solve it, I want to say, well what ( x ) values will make the polynomial equal to zero. So I just need to set this right-hand side to be equal to zero and then solve for ( x ). The best way that I can think of doing that is by factoring this out as much as I can, and if I can rewrite it as a product of a bunch of expressions equaling zero, well, a product of a bunch of things equaling zero, you can make it equal zero by any one of them equaling zero. And so let's do that.

So ( (3x - 8)^2 ), this is already factored quite nicely. Let's see if we can factor all of this business in white, and the way I will tackle it is to see if I can factor by grouping. So let me group together these first two terms, and then let me group together these second two terms. Essentially, factoring by grouping is doing the distributive property in reverse twice.

So from these first two terms, I could factor out, let's see, what could I factor out? I could factor out a—let me see—I'll just factor out ( x^3 ). So I get ( x^3(3x - 8) ). Interesting, we have a ( 3x - 8 ) over there as well. Now these second two terms, I could factor out a ( 5 ), so this is going to be ( +5(x(3x - 8)) ). Very interesting, and of course I have these parentheses around all of that, and then I have ( (3x - 8)^2 ).

This ( 3x - 8 ) is showing up a lot, and so, and of course this is going to be equal to zero. So we're gonna be equal to zero, and now I can factor out a ( 3x - 8 ) over here. I could factor that ( 3x - 8 ) out, and I'm going to get ( (3x - 8)(x^3 + 5) ) times ( (3x - 8)^2 ) is all going to be equal to zero. It's all equal to zero.

Now if what I just did looks a little like voodoo, just realize I have two terms, both of them are multiples of ( 3x - 8 ). I just factored out, I just factored out the ( 3x - 8 ). I did distributive property in reverse, so I factored it out, and what you're left with this term you just look for the next of third, and in this term you're just left with a ( +5 ).

Now ( (3x - 8)(x^3 + 5)(3x - 8)^2 ). Well, I could just rewrite this as ( (3x - 8)^3(x^3 + 5) = 0 ). So let me do that. I can just rewrite this as ( (3x - 8)^3 ), that's that times that, and then times—let's do this in a nicer color—times ( (x^3 + 5) = 0 ).

Now, in order to get this to be equal zero, either ( (3x - 8)^3 ) is going to be equal to zero, or ( (x^3 + 5) ) is going to be equal to zero. So let's first think about ( (3x - 8)^3 = 0 ).

So I can write this as ( 3x - 8 = 0 ) or ( x^3 + 5 = 0 ). So to make ( (3x - 8)^3 ) equal zero, well that means ( 3x - 8 = 0 ) or ( 3x = 8 ). Divide both sides by ( 3 ), ( x = \frac{8}{3} ). So that's one way to make this polynomial equal zero, ( x = \frac{8}{3} ). In fact, just this right over there will become zero, zero times anything is zero.

So this is a zero of our polynomial. And let's see, so for ( x^3 ), we could say, if we subtract ( 5 ) from both sides, we have ( x^3 = -5 ), and so if we take both to the one-third power, we could say ( x = \sqrt[3]{-5} ).

Now at first, you might say, "Wait, can I take the square root of a negative number?" and I would say, "Of course you can!" The cube root of (-1) is (-1). The cube root of (-8) is (-2). In fact, you could, even if we're dealing with reals. This is going to be a negative number. This is not going to be an imaginary number right over here, and so these are, these are the two zeros of the polynomial. There's gonna be negative, I think, negative ( 1 ) point something. I'm sure we could figure it, figure out it exactly.

So let's raise—so let's raise ( 5^{(1/3)} ) is equal to—so that's ( -5^{(1/3)} ), so negative ( 5^{(1/3)} ) power is going to be approximately equal to ( -1.71 ).

So we have two real roots, two real roots to this polynomial, or two zeros, two real zeros for this polynomial. And so those are going to be the two places where we intercept the ( x )-axis. The two ( x ) values for which where the two places where we intercept the ( x )-axis is the easiest way to say it.

More Articles

View All
Starbucks predatory practices, and 'the will of the people'
Lawton, you made a video about the predatory business practices of Starbucks and asked how this will be dealt with in a free market or how we dealt with in the absence of government regulation. Specifically, I think that in a free market, some businesses…
Getting Ducks in a Row | Port Protection
We’re trying to make a better life, not just for us, but also the community. What a day! Beautiful, isn’t it? Oh, you dumped that tote. That’s cool! Yeah, I got rid of that. Thank you! After a year of planning and weeks of hard work, Hans and Timmy Porte…
Ex Y-Combinator President on The Most Notable Founder He's Met | B&F Interview Clips
There’s Name: Brian Chesky and Name: Alexander W, famous founders who have been a part of Y Combinator. However, I’m curious about some of the relatively unknown, or maybe just unknown at all, founders you’ve encountered throughout your journey. What mad…
What Are You?
Are you your body? Well, kind of, right? But is there a line where this stops being true? How much of yourself can you remove before you stop being you? And does the question even make sense? Your physical existence is cells, trillions of them, at least …
Coral Reef Ocean Explorer - Meet the Expert | National Geographic
I’m Lizzy Daly, your host, and I am super thrilled to be back for yet another epic live! Today, if you’re new around here, welcome, welcome, welcome! You are in for a treat. Today, if you’ve been following over the past few weeks, let me tell you—we have …
Inside The $100,000,000 Empire Of Dhar Mann
What’s up, you guys? It’s Graham here, and today I’d like to introduce you to one of the most successful entrepreneurs you probably didn’t expect, Darman. At the age of 30, after nearly having to move back in with his parents, he developed a series of mot…