yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding zeros of polynomials (example 2) | Mathematics III | High School Math | Khan Academy


4m read
·Nov 11, 2024

  • So I have the polynomial ( p(x) ) here, and ( p(x) ) is being expressed as a fourth degree polynomial times ( (3x - 8)^2 ). So this would actually give you some, this would give you ( 9x^2 ) and a bunch of other stuff, and then you multiply that times this. It would actually give you a sixth degree polynomial all in all, but our goal is to find the ( x ) values where that makes ( p(x) = 0 ), or another way to find the roots or the zeros of this polynomial, and in particular, we're going to focus on the real zeros, the real roots of this polynomial. And like always, I encourage you to give a go at it, and then we'll do it together. Alright, let's tackle this.

So, the way I want to solve ( p(x) = 0 ). I want to solve ( p(x) = 0 ), and figure out what, and when I say solve it, I want to say, well what ( x ) values will make the polynomial equal to zero. So I just need to set this right-hand side to be equal to zero and then solve for ( x ). The best way that I can think of doing that is by factoring this out as much as I can, and if I can rewrite it as a product of a bunch of expressions equaling zero, well, a product of a bunch of things equaling zero, you can make it equal zero by any one of them equaling zero. And so let's do that.

So ( (3x - 8)^2 ), this is already factored quite nicely. Let's see if we can factor all of this business in white, and the way I will tackle it is to see if I can factor by grouping. So let me group together these first two terms, and then let me group together these second two terms. Essentially, factoring by grouping is doing the distributive property in reverse twice.

So from these first two terms, I could factor out, let's see, what could I factor out? I could factor out a—let me see—I'll just factor out ( x^3 ). So I get ( x^3(3x - 8) ). Interesting, we have a ( 3x - 8 ) over there as well. Now these second two terms, I could factor out a ( 5 ), so this is going to be ( +5(x(3x - 8)) ). Very interesting, and of course I have these parentheses around all of that, and then I have ( (3x - 8)^2 ).

This ( 3x - 8 ) is showing up a lot, and so, and of course this is going to be equal to zero. So we're gonna be equal to zero, and now I can factor out a ( 3x - 8 ) over here. I could factor that ( 3x - 8 ) out, and I'm going to get ( (3x - 8)(x^3 + 5) ) times ( (3x - 8)^2 ) is all going to be equal to zero. It's all equal to zero.

Now if what I just did looks a little like voodoo, just realize I have two terms, both of them are multiples of ( 3x - 8 ). I just factored out, I just factored out the ( 3x - 8 ). I did distributive property in reverse, so I factored it out, and what you're left with this term you just look for the next of third, and in this term you're just left with a ( +5 ).

Now ( (3x - 8)(x^3 + 5)(3x - 8)^2 ). Well, I could just rewrite this as ( (3x - 8)^3(x^3 + 5) = 0 ). So let me do that. I can just rewrite this as ( (3x - 8)^3 ), that's that times that, and then times—let's do this in a nicer color—times ( (x^3 + 5) = 0 ).

Now, in order to get this to be equal zero, either ( (3x - 8)^3 ) is going to be equal to zero, or ( (x^3 + 5) ) is going to be equal to zero. So let's first think about ( (3x - 8)^3 = 0 ).

So I can write this as ( 3x - 8 = 0 ) or ( x^3 + 5 = 0 ). So to make ( (3x - 8)^3 ) equal zero, well that means ( 3x - 8 = 0 ) or ( 3x = 8 ). Divide both sides by ( 3 ), ( x = \frac{8}{3} ). So that's one way to make this polynomial equal zero, ( x = \frac{8}{3} ). In fact, just this right over there will become zero, zero times anything is zero.

So this is a zero of our polynomial. And let's see, so for ( x^3 ), we could say, if we subtract ( 5 ) from both sides, we have ( x^3 = -5 ), and so if we take both to the one-third power, we could say ( x = \sqrt[3]{-5} ).

Now at first, you might say, "Wait, can I take the square root of a negative number?" and I would say, "Of course you can!" The cube root of (-1) is (-1). The cube root of (-8) is (-2). In fact, you could, even if we're dealing with reals. This is going to be a negative number. This is not going to be an imaginary number right over here, and so these are, these are the two zeros of the polynomial. There's gonna be negative, I think, negative ( 1 ) point something. I'm sure we could figure it, figure out it exactly.

So let's raise—so let's raise ( 5^{(1/3)} ) is equal to—so that's ( -5^{(1/3)} ), so negative ( 5^{(1/3)} ) power is going to be approximately equal to ( -1.71 ).

So we have two real roots, two real roots to this polynomial, or two zeros, two real zeros for this polynomial. And so those are going to be the two places where we intercept the ( x )-axis. The two ( x ) values for which where the two places where we intercept the ( x )-axis is the easiest way to say it.

More Articles

View All
Full speech from Kash Patel, FBI director nominee, makes promises after Donald Trump inauguration
[Music] My oh my, how do you follow Elon Musk when he tells you he’s going to take you to Mars? I’ll tell you how. He and I share something deeply; we love the American dream. And we have been given a gift by God today to usher in a new Dynasty because we…
"The Biggest Mistake I've Ever Made" | Shark Tank's Kevin O'Leary & "The Mooch" Anthony Scaramucci
What do you tell them about building their own net worth and how to go forward and not trip up in that aspect? So many kids come out of college $80,000 in debt and they go straight downward from there. What advice do you give young kids in terms of start…
Why Are You Alive – Life, Energy & ATP
At this very second, you are on a narrow ledge between life and death. You probably don’t feel it, but there’s an incredible amount of activity going on inside you, and this activity can never stop. Picture yourself as a Slinky falling down an escalator m…
Ionization energy: period trend | Atomic structure and properties | AP Chemistry | Khan Academy
In this video, let’s look at the periodic trends for ionization energy. So for this period, as we go across from lithium all the way over to neon. As we go this way across our periodic table, we can see in general there’s an increase in the ionization ene…
The Most Natural Truffle on Earth l Chef Wonderful and Marco Tallarico
What have you got here? One kilo black truffles! You can manufacture diamonds today, but most people don’t want those; they want the natural diamond. It took millions of years to make in the Earth. This is only by the hand of God. What’s very interesting…
When to walk away
Most people don’t want to be cowards. Generally, we want to stand our ground, not give up what we have, and hang in there until things get better. For example, we don’t want to be quitters, so we keep working at our jobs, even though the environment is to…