yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring higher degree polynomials | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

There are many videos on Khan Academy where we talk about factoring polynomials, but what we're going to do in this video is do a few more examples of factoring higher degree polynomials. So let's start with a little bit of a warm-up. Let's say that we wanted to factor 6x squared plus 9x times x squared minus 4x plus 4. Pause this video and see if you can factor this into the product of even more expressions.

All right, now let's do this together. The way that this might be a little bit different than what you've seen before is that this is already partially factored. This polynomial, this higher degree polynomial, is already expressed as the product of two quadratic expressions. But as you might be able to tell, we can factor this further.

For example, 6x squared plus 9x; both 6x squared and 9x are divisible by 3x. So let's factor out a 3x here. This is the same thing as 3x times 3x times what is 6x squared? Well, 3 times 2 is 6, and x times x is x squared. And then 3x times what is 9x? Well, 3x times 3 is 9x. You can verify that if we were to distribute this 3x, you would get 6x squared plus 9x.

And then what about this second expression right over here? Can we factor this? Well, you might recognize this as a perfect square. Some of you might have said, “Hey, I need to come up with two numbers whose product is 4 and whose sum is negative 4,” and you might say, “Hey, that's negative 2 and negative 2.” And so this would be x minus 2. We could write it as x minus 2 squared, or we could write it as x minus 2 times x minus 2.

If what I just did is unfamiliar, I encourage you to go back and watch videos on factoring perfect square quadratics and things like that. But there you have it; I think we have factored this as far as we could go.

So now let's do a slightly trickier higher degree polynomial. So let's say we wanted to factor x to the third minus 4x squared plus 6x minus 24. Just like always, pause this video and see if you can have a go at it. I'll give you a little bit of a hint: you can factor in this case by grouping, and in some ways, it's a little bit easier than what we've done in the past. Historically, when we've learned factoring by grouping, we've looked at a quadratic, and then we looked at the middle term—the x term of the quadratic—and we broke it up so that we had four terms.

Here we already have four terms, so see if you could have a go at that. All right, now let's do it together. You can't always factor a third-degree polynomial by grouping, but sometimes you can, so it's good to look for it.

When we see it written like this, we say, “Okay, x to the third minus 4x squared—is there a common factor here?” Well, yeah, both x to the third and negative four x squared are divisible by x squared. So what happens if we factor out an x squared? So that's x squared times x minus four.

And what about these second two terms? Is there a common factor between 6x and negative 24? Yeah, they're both divisible by 6. So let's factor out a 6 here. So plus 6 times x minus 4.

Now you are probably seeing the home stretch, where you have something times x minus 4 and then something else times x minus 4. You can sometimes, I like to say, undistribute the x minus 4 or factor out the x minus 4. So this is going to be x minus 4 times x squared plus 6. And we are done.

More Articles

View All
Warren Buffett: How You Need to Be Investing in 2024
If you want the ability to build generational wealth and the financial freedom to retire early and leave the unending corporate rat race, you should be listening to Warren Buffett’s most recent investing advice. For the better part of the last year, lege…
How To Live In The Social Media Matrix
This is the challenge, right? We’re all living in this society where these very large and powerful businesses need us all to post a lot. We have to ask ourselves the question: what is the value exchange, and how maybe are we—how do we be careful we’re not…
Kevin O'Leary Rates Brooklyn Dumpling Shop's Finest | Chef Wonderful
[Music] That’s what I’m talking about. Hey, Chef Wonderful here, and I want to talk about dumplings. Yes, I love dumplings, and I think they are just the most amazing food. They bring so many cultures together. It’s such a healthy snack, or you can be dec…
Writing functions with exponential decay | Algebra 1 | Khan Academy
We are told a phone sells for six hundred dollars and loses 25% of its value per year. Write a function that gives the phone’s value ( v(t) ) so value is a function of time ( t ) years after it is sold. So pause this video and have a go of that before we …
Application of the fundamental laws (setup) | Electrical engineering | Khan Academy
All right, now we’re ready to learn how to do circuit analysis. This is what we’ve been shooting for as we’ve learned our fundamental laws. The fundamental laws are Ohm’s law and Kirchhoff’s laws, which we learned with Kirchhoff’s current law and Kirchhof…
AI for Digital SAT prep
All right, everybody! Well, we are going to take time to now introduce, uh, myself as the host and then I’ll let my amazing panelists go ahead and introduce themselves. So nice to meet you! My name is Danielle Sullivan. I am Senior Manager of District Par…