yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring higher degree polynomials | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

There are many videos on Khan Academy where we talk about factoring polynomials, but what we're going to do in this video is do a few more examples of factoring higher degree polynomials. So let's start with a little bit of a warm-up. Let's say that we wanted to factor 6x squared plus 9x times x squared minus 4x plus 4. Pause this video and see if you can factor this into the product of even more expressions.

All right, now let's do this together. The way that this might be a little bit different than what you've seen before is that this is already partially factored. This polynomial, this higher degree polynomial, is already expressed as the product of two quadratic expressions. But as you might be able to tell, we can factor this further.

For example, 6x squared plus 9x; both 6x squared and 9x are divisible by 3x. So let's factor out a 3x here. This is the same thing as 3x times 3x times what is 6x squared? Well, 3 times 2 is 6, and x times x is x squared. And then 3x times what is 9x? Well, 3x times 3 is 9x. You can verify that if we were to distribute this 3x, you would get 6x squared plus 9x.

And then what about this second expression right over here? Can we factor this? Well, you might recognize this as a perfect square. Some of you might have said, “Hey, I need to come up with two numbers whose product is 4 and whose sum is negative 4,” and you might say, “Hey, that's negative 2 and negative 2.” And so this would be x minus 2. We could write it as x minus 2 squared, or we could write it as x minus 2 times x minus 2.

If what I just did is unfamiliar, I encourage you to go back and watch videos on factoring perfect square quadratics and things like that. But there you have it; I think we have factored this as far as we could go.

So now let's do a slightly trickier higher degree polynomial. So let's say we wanted to factor x to the third minus 4x squared plus 6x minus 24. Just like always, pause this video and see if you can have a go at it. I'll give you a little bit of a hint: you can factor in this case by grouping, and in some ways, it's a little bit easier than what we've done in the past. Historically, when we've learned factoring by grouping, we've looked at a quadratic, and then we looked at the middle term—the x term of the quadratic—and we broke it up so that we had four terms.

Here we already have four terms, so see if you could have a go at that. All right, now let's do it together. You can't always factor a third-degree polynomial by grouping, but sometimes you can, so it's good to look for it.

When we see it written like this, we say, “Okay, x to the third minus 4x squared—is there a common factor here?” Well, yeah, both x to the third and negative four x squared are divisible by x squared. So what happens if we factor out an x squared? So that's x squared times x minus four.

And what about these second two terms? Is there a common factor between 6x and negative 24? Yeah, they're both divisible by 6. So let's factor out a 6 here. So plus 6 times x minus 4.

Now you are probably seeing the home stretch, where you have something times x minus 4 and then something else times x minus 4. You can sometimes, I like to say, undistribute the x minus 4 or factor out the x minus 4. So this is going to be x minus 4 times x squared plus 6. And we are done.

More Articles

View All
Limits at infinity of quotients with trig (limit undefined) | AP Calculus AB | Khan Academy
Let’s see if we can figure out what the limit of ( x^2 + 1 ) over ( \sin(x) ) is as ( x ) approaches infinity. So let’s just think about what’s going on in the numerator and then think about what’s going on in the denominator. In the numerator, we have (…
The Hole Where King Tut’s Heart Used to Be | Overheard at National Geographic
Foreign [Music] When I heard the news of this year’s big show with the National Geographic Museum, which is on the first floor of headquarters, I couldn’t wait to see it. It was going to focus on the world’s most famous Pharaoh, King Tut, in honor of the …
Input approach to determining comparative advantage | AP Macroeconomics | Khan Academy
In other videos, we have already looked at production possibility curves and output tables in order to calculate opportunity costs of producing a certain product in a certain country. Then we use that to think about comparative advantage. We’re going to d…
Evaluating expressions like 5x² & ⅓(6)ˣ | 6th grade | Khan Academy
What I want you to do is evaluate the expression 5x squared when x is equal to 3. Pause this video and have a go at that. All right, well we just have to think about every place we see an x; we’ll now replace it with a 3. So this is going to be equivale…
Work and power | Physics | Khan Academy
Earlier, roller coasters used to start from a height with a lot of gravitational potential energy, which then got converted into kinetic energy as the coaster went down. But what you’re seeing here is an example of something called a launched roller coast…
Global winds and currents | Middle school Earth and space science | Khan Academy
One of my favorite things to do is go camping. For me, there’s nothing better than getting outside, breathing in some fresh air, and taking a swim in my favorite river. Have you ever jumped into a river and felt that the deeper, cooler water closer to you…