yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Physics’ greatest mystery: Michio Kaku explains the God Equation | Big Think


3m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

MICHIO KAKU: What is the mind of God, that Albert Einstein chased after for 30 years of his life? Einstein wanted an equation that would unify gravity, electromagnetic force, and the two nuclear forces. He wanted unification of all four forces into one theory: The theory of everything, the God Equation.

My name is professor Michio Kaku. I'm a professor of theoretical physics at the City University of New York, and author of the recent book "The God Equation: The Quest for the Theory of Everything." Leonard Euler, one of the great mathematicians of human history, found one equation which summarized the fundamental constants of math: One plus e to the i pi equals zero. People call that the God Equation of Mathematics.

Now, of course, the God Equation is useless as a practical application, but think now of a God Equation for physics. Physics is quite useful. When Newton worked out the mechanics of moving objects and gravity, he helped to lay the groundwork for the Industrial Revolution. And then Maxwell and Faraday united electricity and magnetism to give us the electromagnetic force: The electric revolution of dynamos, generators, and light bulbs.

And now we have e equals mc-squared, which helped to pave the way for the nuclear force. Each time a force was unraveled, it changed human history. And now, we want to put the whole thing together into the God Equation, fulfilling Einstein's original dream.

The God Equation, just like the God Equation of Mathematics, should unify the basic concepts of physics into one equation. Now, what are these basic concepts? Relativity and the quantum theory. The problem is, the quantum theory does not unify well with general activity. See, general activity of Einstein is based on smooth surfaces. The quantum theory is based on chopping things up into particles. That's the opposite of Einstein's philosophy of smooth curves representing space-time. That's why it's so difficult.

It's no exaggeration to say that the greatest minds of the entire human race have made proposals for this grand final theory of everything. Each one was shown to be anomalous or divergent. So far, there's only one theory which has survived every challenge: string theory, which is what I do for a living.

Now, what is string theory? From a distance, an electron looks like a dot. The neutrino is another dot. The quark is another dot. We have all these dot particles. How many dot particles? Hundreds of them. But string theory says if you can peer into the heart of an electron, you will see that it's a rubber band: A tiny, tiny vibrating string, very similar to a guitar string. There's an infinite number of vibrations, and that is why we have subatomic particles. The subatomic particles each correspond to a different set of vibrations of a rubber band.

String theory allows you to rotate particles into each other, turning electrons into neutrinos, neutrinos into quarks, and the theory remains the same. That is the symmetry of the string, and that's why it's so powerful: A simple idea that encapsulates the entire universe.

Now, my personal point of view is, string theory is probably the only mathematically consistent theory. All of the theories are mathematically inconsistent. What does that mean? It means that if you prove it far enough, you can prove that two plus two equals five. Therefore the theory is wrong. So far with string theory, two plus two always is four. Perhaps, it is the only theory where two plus two is four.

There are a lot of objections for string theory, by the way. The biggest objection is you can't test it. But we're getting closer and closer to being able to test it. This theory of everything blows your mind. It allows for the presence of perhaps time machines, wormholes, the universe before the Big Bang, parallel universes, the multiverse, things out of the twilight zone.

Can you go backwards in time and meet your parents before you were born? Can you go travel faster than the speed of light through a wormhole? We don't know. That's why we need string theory.

  • Get smarter faster with new videos every week...

More Articles

View All
Identifying scale factor in drawings | Geometry | 7th grade | Khan Academy
So right over here, figure B is a scaled copy of figure A, and what we want to do is figure out what is the scale factor to go from figure A to figure B. Pause the video and see if you can figure that out. Well, all we have to do is look at corresponding…
360° Orangutan School | National Geographic
In a remote corner of Borneo, hidden in a patch of protective jungle, there’s a school for baby orangutans. Very often, we receive around, and they have spent their whole life in captivity, and that they have never been able to climb a tree. Rescued from …
Passive Income: How To Make $100 Per Day With Dividends
What’s up guys? It’s Graham here. So instead of the usual Doom and Gloom, let’s talk about this: how to make a hundred dollars a day with dividends starting from zero dollars the easy way, coming from someone who’s done exactly that. In fact, my dividend …
How to Touch Down on Mars | StarTalk
All right, so let’s back up for a minute, because your specialty was getting the thing there safely. Yes, so that the scientists could do their job. And so, would I remember from Spirit and Opportunity? They preview that the previous round of this, they h…
Solving exponent equation using exponent properties
So I have an interesting equation here. It says ( V^{-65} ) times the fifth root of ( V ) is equal to ( V^{K} ) for ( V ) being greater than or equal to zero. What I want to do is try to figure out what ( K ) needs to be. So what is ( K ) going to be equa…
LC natural response example
So, in previous videos, we worked out an expression for the current ( i ) in an LC circuit like this, and what we found was that ( i ) is the square root of capacitance over inductance times the starting voltage ( v_0 ) times sine ( \omega_0 t ). And ( \…