yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why Women Are Stripey


4m read
·Nov 10, 2024

[Applause] Inside each one of your cells, there is six feet of DNA made up of six billion letters of genetic code. Now, your DNA is split into 46 pieces, each 3 to 4 cm long, called chromosomes. Now, normally we think of chromosomes as looking like this, but they only take that form when a cell is ready to divide. So, usually, DNA is just a wiggly thread within the nucleus.

Now, if you can imagine, DNA is only about 2 nanometers wide, but a chromosome is cm long. So, you would think that it would get tangled worse than the headphones in your bag. So, the DNA is actually wrapped around proteins called histones. Now, those histones have wiggly tails, which will come in handy, as we'll see in a moment.

Your unique set of DNA first formed when 23 chromosomes from your mom mixed with 23 from your dad. Now, 22 of those chromosomes from each parent form matching pairs, but the 23rd set is the sex chromosomes. So, two X chromosomes make you female, and an X and a Y make you male. Now, since the male sex chromosomes are different, both can remain active for the rest of your life.

But for females, one of the X chromosomes needs to be inactivated in order for proper development to occur. This happens when a female embryo is just 4 days old and consists of only 100 cells. Right now, in this cell, the X chromosome from Dad and the one from Mom are both active, but through a tiny molecular battle, one of the X chromosomes wins and remains active while the other is inactivated.

This is done by packing the DNA closer together and making modifications to those dangly histone tails that signal this inactivation. New structural proteins are also added to bind everything closer together, and finally, methyl groups—these tiny little molecular markers—are added to the DNA to basically signal to the cell that this DNA shouldn't be read. So, all of this together makes the DNA very difficult to access for the molecular machinery that would harness the code in this DNA. It is switched off.

This DNA is silenced. In contrast, the active X chromosome DNA is more spread out. This allows better access to the genes on the chromosome. Histones can be slid along the DNA or removed entirely, and the histone tails have a different modification signaling this DNA is active. Now, all of this makes it possible for RNA polymerase to access and transcribe this DNA into messenger RNA, which then goes out into the cell and is used to make a protein.

Now, what's surprising about X chromosome inactivation is that it seems kind of random which X chromosome wins. I mean, in some cells, Dad's X chromosome wins, and in others, Mom's X chromosome wins. So, this 100-cell embryo ends up with a mixture of active X chromosomes. But from this point forward, as these cells divide, they maintain the active X chromosome that they had inside.

So, all of the cells with Dad's active X chromosome give rise to further cells with Dad's active X chromosome, and this continues on into adulthood. So, if you could look at a woman's skin and see which X chromosome has been inactivated, you would see a stripy pattern which shows the growth and mixing of all of these first 100 cells when the embryo was just 4 days old.

[Music] Now, of course, you can actually see that in humans, but you can see this with calico cats, and that's because the gene for coat color is actually on the X chromosome. So, just by looking at the pattern of her spots here, her dark and light spots, you can see where her mom or dad's X chromosome has been inactivated. And this also shows us that only female cats can be calico cats, and that's because, well, only female cats can inherit two X chromosomes with two different color genes.

Now, this is just one really cool example of epigenetics, but epigenetics doesn't normally work on one whole chromosome. In fact, it's at play in all of your chromosomes, turning on and off your genes. For example, it's epigenetics which makes a pancreatic cell capable of producing insulin because that gene is switched on there, but switched off everywhere else.

What's more interesting is that it seems the behaviors you take can actually affect your epigenetics, and even weirder, perhaps the things that your parents or grandparents did can affect your epigenetics. Now, can affect your DNA. So, you are not just a product of your genetic code. You're not just a product of your DNA. You are also a product of your epigenetics, and that is influenced by your behavior and the behavior of your ancestors.

[Music]

More Articles

View All
Building Furniture and Creating a Home in the Wild | Home in the Wild
JIM: (whistles) North! Yeah! HUDSON: Yeah! JIM: We’re goin’ in the canoe! TORI: Come on, in the boat, please. Good boy! Okay, hon, ready? JIM: We’re heading back to camp with the wood we foraged. HUDSON: Yeah! JIM (off screen): All right, perfect…
Homeroom with Sal & Dr. Jennifer Doudna - Wednesday, January 13
Hi everyone, Sal Khan here. Welcome to the Homeroom with Sal livestream. We have a very, very exciting conversation today with Jennifer Doudna, the 2020 Nobel Prize winner in Chemistry for what has often been described as one of the most important discove…
The Unscheduled Life
No to everything. I say no to everything. I don’t have a calendar, so when people say, “How about such and such time?” I’m like, “Hm, well, I would have to either set an alarm for it or I would have to remember it.” So that way, unless I really, really ba…
Elk Conservation in Yellowstone, LIVE! | Yellowstone Live
Yeah, it’s more like my hair. You look, you know people pay to have wind blow swings, right? Great! Hi, I’m Amber Ghoshal here with Arthur Middleton. He’s an animal ecologist and a NatGeo Explorer. We are in very windy West Yellowstone at Under Canvas. It…
15 Types Of People YOU NEED TO AVOID
It is not a strange thing to say that the type of people you surround yourself with have a significant impact on your life. After all, a lot of your time will be spent with them, and it is only natural that their habits and the things they say would affec…
Nike vs Adidas: Who Won The Game?
The sneakers industry can be described in one word: ruthless. This is precisely the reason why a handful of companies have continued to dominate the market for decades. But who are the top two leaders in the industry? Well, you might know the answer alrea…