yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying & dividing powers (integer exponents) | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice with our exponent properties, especially when we have integer exponents. So let's think about what ( 4^{-3} \times 4^{5} ) is going to be equal to. I encourage you to pause the video and think about it on your own.

Well, there's a couple of ways to do this. One, you say, "Look, I'm multiplying two things that have the same base." So this is going to be that base, 4, and then I add the exponents: ( 4^{-3 + 5} ), which is equal to ( 4^{2} ). And that's just a straightforward exponent property.

But you can also think about why that actually makes sense. ( 4^{-3} ) power; that is ( \frac{1}{4^{3}} ), or you could view that as ( \frac{1}{4 \times 4 \times 4} ). And then ( 4^{5} ), that's ( 4 ) multiplied together ( 5 ) times, so it's ( 4 \times 4 \times 4 \times 4 \times 4 ).

So notice, when you multiply this out, you're going to have five ( 4 )s in the numerator and three ( 4 )s in the denominator. Three of these in the denominator are going to cancel out with three of these in the numerator. So you're going to be left with ( 5 - 3 ) or ( -3 + 5 ) ( 4 )s.

So this ( 4 \times 4 ) is the same thing as ( 4^{2} ). Now let's do one with variables. So let's say that you have ( a^{-4} \times a^{2} ). What is that going to be?

Well, once again, you have the same base; in this case, it's ( a ). And since I'm multiplying them, you can just add the exponents. So it's going to be ( a^{-4 + 2} ), which is equal to ( a^{-2} ). And once again, it should make sense.

This right over here, that is ( \frac{1}{a \times a \times a \times a} ) and then this is ( \times a \times a ). So that cancels with that; that cancels with that, and you're still left with ( \frac{1}{a \times a} ), which is the same thing as ( a^{-2} ).

Now let's do it with some quotients. So what if I were to ask you, what is ( 12^{-7} / 12^{-5} )? Well, when you're dividing, you subtract exponents if you have the same base. So this is going to be equal to ( 12^{-7 - (-5)} ). You're subtracting the bottom exponent, and so this is going to be equal to ( 12^{-7 + 5} ), well that’s ( 12^{-2} ).

And once again, we just have to think about why this actually makes sense. Well, you can actually rewrite this ( \frac{12^{-7}}{12^{-5}} ); that's the same thing as ( 12^{-7} \times 12^{5} ). If we take the reciprocal of this right over here, you would make the exponent positive, and then you get exactly what we were doing in those previous examples with products.

So let's just do one more with variables for good measure. Let's say I have ( \frac{x^{20}}{x^{5}} ). Well, once again, we have the same base and we're taking a quotient. So this is going to be ( x^{20 - 5} ) because we have this ( 5 ) in the denominator.

So this is going to be equal to ( x^{15} ). And once again, you could view our original expression as ( x^{20} ) and having ( x^{5} ) in the denominator. Dividing by ( x^{5} ) is the same thing as multiplying by ( x^{-5} ), and so here you just add the exponents. Once again, you would get ( x^{15} ).

More Articles

View All
A Tale of Two Atoms | Cosmos: Possible Worlds
The writer H.G. Wells, who first imagined time machines and alien invasions, had a nightmare of a future world where atoms were weaponized. In his book called “The World Set Free”, written in 1913, he coined the phrase atomic bombs and loosed them on help…
The elements of a story | Reading | Khan Academy
Hello readers! I’m going to draw you a map right now, and it’s going to look like I’ve drawn a mountain. But it’s not a map of a mountain; it’s a map of a story. What you’re saying: how do you map a story? What makes a story pointy? These are great quest…
Housing Expert: “Why Home Prices Will Crash In 2026”
What’s up you guys, it’s Graham here, and we got to talk about what’s happening with housing prices. Because despite record high values, constant increases, and the worst affordability in 40 years, there’s actually some good news in that a few major housi…
.38 Special vs Prince Ruperts Drop at 170,000 FPS - Smarter Every Day 169
Hey, it’s me, Destin. Welcome back to Smarter Every Day. In one of the previous episodes, we shot a .22 caliber bullet against various Prince Rupert’s Drops, and you saw it splatter against the glass. It was fascinating. Now, a lot of people had comments…
Nietzsche - How to Become Who You Are
For Nietzsche, becoming who you are leads to greatness. And in Ecce Homo, he wrote, “[that] one becomes what one is presupposes that one does not have the remotest idea what one is.” The question of how you become what you are begins with the idea that yo…
15 Lessons That Take The Longest to Learn
You don’t have as much time as you think you have. Some incredibly important lessons become obvious only in retrospect, but you learn them the hard way. This video is your unique opportunity to learn these lessons now so you can benefit from them for the …