yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying & dividing powers (integer exponents) | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice with our exponent properties, especially when we have integer exponents. So let's think about what ( 4^{-3} \times 4^{5} ) is going to be equal to. I encourage you to pause the video and think about it on your own.

Well, there's a couple of ways to do this. One, you say, "Look, I'm multiplying two things that have the same base." So this is going to be that base, 4, and then I add the exponents: ( 4^{-3 + 5} ), which is equal to ( 4^{2} ). And that's just a straightforward exponent property.

But you can also think about why that actually makes sense. ( 4^{-3} ) power; that is ( \frac{1}{4^{3}} ), or you could view that as ( \frac{1}{4 \times 4 \times 4} ). And then ( 4^{5} ), that's ( 4 ) multiplied together ( 5 ) times, so it's ( 4 \times 4 \times 4 \times 4 \times 4 ).

So notice, when you multiply this out, you're going to have five ( 4 )s in the numerator and three ( 4 )s in the denominator. Three of these in the denominator are going to cancel out with three of these in the numerator. So you're going to be left with ( 5 - 3 ) or ( -3 + 5 ) ( 4 )s.

So this ( 4 \times 4 ) is the same thing as ( 4^{2} ). Now let's do one with variables. So let's say that you have ( a^{-4} \times a^{2} ). What is that going to be?

Well, once again, you have the same base; in this case, it's ( a ). And since I'm multiplying them, you can just add the exponents. So it's going to be ( a^{-4 + 2} ), which is equal to ( a^{-2} ). And once again, it should make sense.

This right over here, that is ( \frac{1}{a \times a \times a \times a} ) and then this is ( \times a \times a ). So that cancels with that; that cancels with that, and you're still left with ( \frac{1}{a \times a} ), which is the same thing as ( a^{-2} ).

Now let's do it with some quotients. So what if I were to ask you, what is ( 12^{-7} / 12^{-5} )? Well, when you're dividing, you subtract exponents if you have the same base. So this is going to be equal to ( 12^{-7 - (-5)} ). You're subtracting the bottom exponent, and so this is going to be equal to ( 12^{-7 + 5} ), well that’s ( 12^{-2} ).

And once again, we just have to think about why this actually makes sense. Well, you can actually rewrite this ( \frac{12^{-7}}{12^{-5}} ); that's the same thing as ( 12^{-7} \times 12^{5} ). If we take the reciprocal of this right over here, you would make the exponent positive, and then you get exactly what we were doing in those previous examples with products.

So let's just do one more with variables for good measure. Let's say I have ( \frac{x^{20}}{x^{5}} ). Well, once again, we have the same base and we're taking a quotient. So this is going to be ( x^{20 - 5} ) because we have this ( 5 ) in the denominator.

So this is going to be equal to ( x^{15} ). And once again, you could view our original expression as ( x^{20} ) and having ( x^{5} ) in the denominator. Dividing by ( x^{5} ) is the same thing as multiplying by ( x^{-5} ), and so here you just add the exponents. Once again, you would get ( x^{15} ).

More Articles

View All
13 Ways To RECOGNIZE ENVY And FALSEHOOD In Others | STOICISM
Every one of us at some point in our lives faces moments where everything we’ve worked for seems to crumble before our eyes. It’s in these moments, amidst the chaos and the disappointment, that the ancient wisdom of Stoicism can light our way. Today, we d…
MMOs in the Instagram Era: Highrise (S18) - YC Gaming Tech Talks 2020
Um, hi everybody! I’m Jimmy, I’m the co-founder and CTO of Pocket Worlds. We’re High-Rise, and we built High-Rise, the app which is available on iOS and Android. I think to date, it has over 5 million downloads, and we’re grossing over a million a month i…
5 Things to Know About the Warming Arctic | Before the Flood
If you look at it from space, the top of the world, the white ice acts like a reflector, like a mirror that sends back sunlight and energy and heat back to space. That’s what made the Arctic the cooling system of the planet. I was walking with Leo on the…
Warren Buffett on How to Calculate Intrinsic Value of a Stock
I mean, if somebody shows us a business, you know, the first thing that goes through our head is: would we rather own this business than more Coca-Cola? Would we rather own it than more Gillette? Now, it’s crazy not to compare it to things that you’re ver…
Slope and intercept in tables
Flynn’s sister loaned him some money, and he paid her back over time. Flynn graphed the relationship between how much time had passed in weeks since the loan and how much money he still owed his sister. What feature of the graph represents how long it too…
Personal rights of citizenship | Citizenship | High school civics | Khan Academy
One of the chief responsibilities of the U.S. government is protecting the rights of citizens. But what are those rights? The extent of and limits on rights can be very complex. That’s why we have constitutional lawyers and Supreme Court cases to decide w…