yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying & dividing powers (integer exponents) | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice with our exponent properties, especially when we have integer exponents. So let's think about what ( 4^{-3} \times 4^{5} ) is going to be equal to. I encourage you to pause the video and think about it on your own.

Well, there's a couple of ways to do this. One, you say, "Look, I'm multiplying two things that have the same base." So this is going to be that base, 4, and then I add the exponents: ( 4^{-3 + 5} ), which is equal to ( 4^{2} ). And that's just a straightforward exponent property.

But you can also think about why that actually makes sense. ( 4^{-3} ) power; that is ( \frac{1}{4^{3}} ), or you could view that as ( \frac{1}{4 \times 4 \times 4} ). And then ( 4^{5} ), that's ( 4 ) multiplied together ( 5 ) times, so it's ( 4 \times 4 \times 4 \times 4 \times 4 ).

So notice, when you multiply this out, you're going to have five ( 4 )s in the numerator and three ( 4 )s in the denominator. Three of these in the denominator are going to cancel out with three of these in the numerator. So you're going to be left with ( 5 - 3 ) or ( -3 + 5 ) ( 4 )s.

So this ( 4 \times 4 ) is the same thing as ( 4^{2} ). Now let's do one with variables. So let's say that you have ( a^{-4} \times a^{2} ). What is that going to be?

Well, once again, you have the same base; in this case, it's ( a ). And since I'm multiplying them, you can just add the exponents. So it's going to be ( a^{-4 + 2} ), which is equal to ( a^{-2} ). And once again, it should make sense.

This right over here, that is ( \frac{1}{a \times a \times a \times a} ) and then this is ( \times a \times a ). So that cancels with that; that cancels with that, and you're still left with ( \frac{1}{a \times a} ), which is the same thing as ( a^{-2} ).

Now let's do it with some quotients. So what if I were to ask you, what is ( 12^{-7} / 12^{-5} )? Well, when you're dividing, you subtract exponents if you have the same base. So this is going to be equal to ( 12^{-7 - (-5)} ). You're subtracting the bottom exponent, and so this is going to be equal to ( 12^{-7 + 5} ), well that’s ( 12^{-2} ).

And once again, we just have to think about why this actually makes sense. Well, you can actually rewrite this ( \frac{12^{-7}}{12^{-5}} ); that's the same thing as ( 12^{-7} \times 12^{5} ). If we take the reciprocal of this right over here, you would make the exponent positive, and then you get exactly what we were doing in those previous examples with products.

So let's just do one more with variables for good measure. Let's say I have ( \frac{x^{20}}{x^{5}} ). Well, once again, we have the same base and we're taking a quotient. So this is going to be ( x^{20 - 5} ) because we have this ( 5 ) in the denominator.

So this is going to be equal to ( x^{15} ). And once again, you could view our original expression as ( x^{20} ) and having ( x^{5} ) in the denominator. Dividing by ( x^{5} ) is the same thing as multiplying by ( x^{-5} ), and so here you just add the exponents. Once again, you would get ( x^{15} ).

More Articles

View All
The Real DEFINITIONS of SUCCESS
Everyone wants to be successful, but most people can’t define it because even if they tried, most people would get it wrong. We all know that after $125,000 per year, money no longer contributes to happiness or fulfillment. So, what does it actually mean …
Charlie Munger's New Warning for the 2023 Stock Market
I used to come to the Berkshire annual meetings on coach from Los Angeles, and it was full of rich stockholders, and they would clap when I came into the coach section. I really like that. Holly mentioned Warren Buffett’s right-hand man, the vice chairma…
Natascha McElhone: Playing Elizabeth Hopkins | Saints & Strangers
Elizabeth is a stranger. She’s not a program. She should even come for religious reasons, and this is indicative of the age and the era, 1620s. Uh, Elizabeth is introduced and is in the story largely because of her husband, Steven Hopkins. She comes with…
Fishin' Frenzy Makes Their Own Path | Wicked Tuna: Outer Banks
[Music] Where are the fish, man? See anything spectacular? I see a lot of water, see a lot of other boats. Yeah, there’s no tuna though. The spot we’re at was hot the last couple days, but apparently it’s all dried up. It makes it extremely difficult for…
Get to Know Your Land | Live Free or Die: How to Homestead
[Music] [Music] Hello there! Well, hello there! We’re hanging out in the forest garden, being cool homesteaders. So, when I first came here, I had this idea from looking at pictures and books of what my homestead was going to look like; pictures that we…
How To Get Rich According To Bill Gates
There are a million ways to make $1,000,000. And this is how Bill Gates did it. Welcome to ALUX. Now, first of all, you need to focus on the power of feedback loops. In one of his annual letters, Bill Gates said you can achieve amazing progress if you se…