yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying & dividing powers (integer exponents) | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice with our exponent properties, especially when we have integer exponents. So let's think about what ( 4^{-3} \times 4^{5} ) is going to be equal to. I encourage you to pause the video and think about it on your own.

Well, there's a couple of ways to do this. One, you say, "Look, I'm multiplying two things that have the same base." So this is going to be that base, 4, and then I add the exponents: ( 4^{-3 + 5} ), which is equal to ( 4^{2} ). And that's just a straightforward exponent property.

But you can also think about why that actually makes sense. ( 4^{-3} ) power; that is ( \frac{1}{4^{3}} ), or you could view that as ( \frac{1}{4 \times 4 \times 4} ). And then ( 4^{5} ), that's ( 4 ) multiplied together ( 5 ) times, so it's ( 4 \times 4 \times 4 \times 4 \times 4 ).

So notice, when you multiply this out, you're going to have five ( 4 )s in the numerator and three ( 4 )s in the denominator. Three of these in the denominator are going to cancel out with three of these in the numerator. So you're going to be left with ( 5 - 3 ) or ( -3 + 5 ) ( 4 )s.

So this ( 4 \times 4 ) is the same thing as ( 4^{2} ). Now let's do one with variables. So let's say that you have ( a^{-4} \times a^{2} ). What is that going to be?

Well, once again, you have the same base; in this case, it's ( a ). And since I'm multiplying them, you can just add the exponents. So it's going to be ( a^{-4 + 2} ), which is equal to ( a^{-2} ). And once again, it should make sense.

This right over here, that is ( \frac{1}{a \times a \times a \times a} ) and then this is ( \times a \times a ). So that cancels with that; that cancels with that, and you're still left with ( \frac{1}{a \times a} ), which is the same thing as ( a^{-2} ).

Now let's do it with some quotients. So what if I were to ask you, what is ( 12^{-7} / 12^{-5} )? Well, when you're dividing, you subtract exponents if you have the same base. So this is going to be equal to ( 12^{-7 - (-5)} ). You're subtracting the bottom exponent, and so this is going to be equal to ( 12^{-7 + 5} ), well that’s ( 12^{-2} ).

And once again, we just have to think about why this actually makes sense. Well, you can actually rewrite this ( \frac{12^{-7}}{12^{-5}} ); that's the same thing as ( 12^{-7} \times 12^{5} ). If we take the reciprocal of this right over here, you would make the exponent positive, and then you get exactly what we were doing in those previous examples with products.

So let's just do one more with variables for good measure. Let's say I have ( \frac{x^{20}}{x^{5}} ). Well, once again, we have the same base and we're taking a quotient. So this is going to be ( x^{20 - 5} ) because we have this ( 5 ) in the denominator.

So this is going to be equal to ( x^{15} ). And once again, you could view our original expression as ( x^{20} ) and having ( x^{5} ) in the denominator. Dividing by ( x^{5} ) is the same thing as multiplying by ( x^{-5} ), and so here you just add the exponents. Once again, you would get ( x^{15} ).

More Articles

View All
See Why These Cute Little Goats Are the Latest Yoga Craze | Short Film Showcase
So I have six goats: Anel and Adams, because I’m a photographer, so that seemed fitting for my first two goats. They are all mini goats, but Dodger—that’s who I got next—and he’s a B goat. He was going to go in someone’s freezer; he’s a huge pain. Then I …
How Bacteria Rule Over Your Body – The Microbiome
Microbes are everywhere, on your phone, in your water bottle, on your hands before you wash them, on your hands after you wash them, and literally everywhere else on top of you too. Microbes are omnipresent at any moment, and there is nothing we can do ab…
2015 AP Calculus AB/BC 3b | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Part B using correct units, explain the meaning of the definite integral. So, it’s the definite integral from zero to tal 40 of the absolute value V of T DT. In the context of the problem, approximate the value of that integral using a right Riemann sum …
The Market Revolution - part 2
So we’ve been talking about the market revolution in the United States, which was this period in the first half of the 19th century where the way that Americans did business really changed. It changed in a number of ways. The kinds of work that people did…
Inverse matrices and matrix equations | Matrices | Precalculus | Khan Academy
In a previous video, we talked about how you can represent a system of equations as essentially a matrix equation. So, for example, here I have two equations with two unknowns, x and y. Well, let’s just assume that we know what a, b, p, c, d, and q, r are…
Worked example: using recursive formula for arithmetic sequence | High School Math | Khan Academy
We are told b of 1 is equal to negative 7, and b of n is equal to b of n minus 1 plus 12. They’re asking us to find the fourth term in the sequence. So, what we have up here, which you could use a function definition, it’s really defining the terms of a s…