yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying & dividing powers (integer exponents) | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice with our exponent properties, especially when we have integer exponents. So let's think about what ( 4^{-3} \times 4^{5} ) is going to be equal to. I encourage you to pause the video and think about it on your own.

Well, there's a couple of ways to do this. One, you say, "Look, I'm multiplying two things that have the same base." So this is going to be that base, 4, and then I add the exponents: ( 4^{-3 + 5} ), which is equal to ( 4^{2} ). And that's just a straightforward exponent property.

But you can also think about why that actually makes sense. ( 4^{-3} ) power; that is ( \frac{1}{4^{3}} ), or you could view that as ( \frac{1}{4 \times 4 \times 4} ). And then ( 4^{5} ), that's ( 4 ) multiplied together ( 5 ) times, so it's ( 4 \times 4 \times 4 \times 4 \times 4 ).

So notice, when you multiply this out, you're going to have five ( 4 )s in the numerator and three ( 4 )s in the denominator. Three of these in the denominator are going to cancel out with three of these in the numerator. So you're going to be left with ( 5 - 3 ) or ( -3 + 5 ) ( 4 )s.

So this ( 4 \times 4 ) is the same thing as ( 4^{2} ). Now let's do one with variables. So let's say that you have ( a^{-4} \times a^{2} ). What is that going to be?

Well, once again, you have the same base; in this case, it's ( a ). And since I'm multiplying them, you can just add the exponents. So it's going to be ( a^{-4 + 2} ), which is equal to ( a^{-2} ). And once again, it should make sense.

This right over here, that is ( \frac{1}{a \times a \times a \times a} ) and then this is ( \times a \times a ). So that cancels with that; that cancels with that, and you're still left with ( \frac{1}{a \times a} ), which is the same thing as ( a^{-2} ).

Now let's do it with some quotients. So what if I were to ask you, what is ( 12^{-7} / 12^{-5} )? Well, when you're dividing, you subtract exponents if you have the same base. So this is going to be equal to ( 12^{-7 - (-5)} ). You're subtracting the bottom exponent, and so this is going to be equal to ( 12^{-7 + 5} ), well that’s ( 12^{-2} ).

And once again, we just have to think about why this actually makes sense. Well, you can actually rewrite this ( \frac{12^{-7}}{12^{-5}} ); that's the same thing as ( 12^{-7} \times 12^{5} ). If we take the reciprocal of this right over here, you would make the exponent positive, and then you get exactly what we were doing in those previous examples with products.

So let's just do one more with variables for good measure. Let's say I have ( \frac{x^{20}}{x^{5}} ). Well, once again, we have the same base and we're taking a quotient. So this is going to be ( x^{20 - 5} ) because we have this ( 5 ) in the denominator.

So this is going to be equal to ( x^{15} ). And once again, you could view our original expression as ( x^{20} ) and having ( x^{5} ) in the denominator. Dividing by ( x^{5} ) is the same thing as multiplying by ( x^{-5} ), and so here you just add the exponents. Once again, you would get ( x^{15} ).

More Articles

View All
15 Habits That Make You SMARTER Every Day
What do you think smart people have in common? A lot of people think of intelligence as something you’re simply born with; some people, after all, make being smart look effortless. Intelligence, though, isn’t a set trait. It’s a changeable, flexible abili…
Ray Dalio Bets BIG on GOLD
This video is sponsored by Stake. Download the Stake app today and use the referral code AWC to receive a free stock when you fund your account. Details in the description. Ray Dalio has always been a pretty big believer in holding at least a little bit …
Why Are 96,000,000 Black Balls on This Reservoir?
(Shade balls rolling) - These are shade balls. They’re being dumped into this water reservoir in Los Angeles. And contrary to what you may have heard, their main purpose is not to reduce evaporation. So what are they really for? To find out, I’m visiting …
DEEP DIVE #1 - Smarter Every Day 52
Hey, it’s me Destin. Welcome back to Smarter Every Day. So today, I’m laying tile in my house, and in order to do so, I have to make all these intricate cuts to lay the proper foundation. Now, it’s pretty challenging, but many people have done this over …
Westward expansion: social and cultural development | AP US History | Khan Academy
[Instructor] In other videos, we’ve discussed the causes and effects of westward expansion in the 19th century, focusing on the period that began with the discovery of gold in California in 1849 and ending shortly after the Civil War. But westward expan…
Why Do You Make People Look Stupid?
Hey Youtube, you said you wanted to talk. What’s up? Why do you go around making other people look stupid? What do you mean? What’s water made of? Water. Hahaha, what makes water? Water. Ok, what elements does it take to make water? H2O. So what …