yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying & dividing powers (integer exponents) | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice with our exponent properties, especially when we have integer exponents. So let's think about what ( 4^{-3} \times 4^{5} ) is going to be equal to. I encourage you to pause the video and think about it on your own.

Well, there's a couple of ways to do this. One, you say, "Look, I'm multiplying two things that have the same base." So this is going to be that base, 4, and then I add the exponents: ( 4^{-3 + 5} ), which is equal to ( 4^{2} ). And that's just a straightforward exponent property.

But you can also think about why that actually makes sense. ( 4^{-3} ) power; that is ( \frac{1}{4^{3}} ), or you could view that as ( \frac{1}{4 \times 4 \times 4} ). And then ( 4^{5} ), that's ( 4 ) multiplied together ( 5 ) times, so it's ( 4 \times 4 \times 4 \times 4 \times 4 ).

So notice, when you multiply this out, you're going to have five ( 4 )s in the numerator and three ( 4 )s in the denominator. Three of these in the denominator are going to cancel out with three of these in the numerator. So you're going to be left with ( 5 - 3 ) or ( -3 + 5 ) ( 4 )s.

So this ( 4 \times 4 ) is the same thing as ( 4^{2} ). Now let's do one with variables. So let's say that you have ( a^{-4} \times a^{2} ). What is that going to be?

Well, once again, you have the same base; in this case, it's ( a ). And since I'm multiplying them, you can just add the exponents. So it's going to be ( a^{-4 + 2} ), which is equal to ( a^{-2} ). And once again, it should make sense.

This right over here, that is ( \frac{1}{a \times a \times a \times a} ) and then this is ( \times a \times a ). So that cancels with that; that cancels with that, and you're still left with ( \frac{1}{a \times a} ), which is the same thing as ( a^{-2} ).

Now let's do it with some quotients. So what if I were to ask you, what is ( 12^{-7} / 12^{-5} )? Well, when you're dividing, you subtract exponents if you have the same base. So this is going to be equal to ( 12^{-7 - (-5)} ). You're subtracting the bottom exponent, and so this is going to be equal to ( 12^{-7 + 5} ), well that’s ( 12^{-2} ).

And once again, we just have to think about why this actually makes sense. Well, you can actually rewrite this ( \frac{12^{-7}}{12^{-5}} ); that's the same thing as ( 12^{-7} \times 12^{5} ). If we take the reciprocal of this right over here, you would make the exponent positive, and then you get exactly what we were doing in those previous examples with products.

So let's just do one more with variables for good measure. Let's say I have ( \frac{x^{20}}{x^{5}} ). Well, once again, we have the same base and we're taking a quotient. So this is going to be ( x^{20 - 5} ) because we have this ( 5 ) in the denominator.

So this is going to be equal to ( x^{15} ). And once again, you could view our original expression as ( x^{20} ) and having ( x^{5} ) in the denominator. Dividing by ( x^{5} ) is the same thing as multiplying by ( x^{-5} ), and so here you just add the exponents. Once again, you would get ( x^{15} ).

More Articles

View All
THIS Made Me Change My Mind About Bitcoin | Anthony Pompliano
You and I had some epic showdowns on television. You called it everything from crypto garbage, uh, to one time you forbid me from owning any more of it, uh, but I think that there’s a lot of changes that have happened in the market, both from a regulatory…
Joe Exotic and the Tiger Trade | Trafficked with Mariana van Zeller
[Car horns blaring] [Phone ringing] [Jungle wildlife calls] OPERATOR (THROUGH PHONE): Prepaid call from. JOE EXOTIC (THROUGH PHONE): Joe Exotic. OPERATOR (THROUGH PHONE): An inmate at the Grady County Jail. This call is also subject to being recorded o…
Single replacement reactions | Chemistry | Khan Academy
If you put a copper wire in this silver nitrate solution, then you’ll get this beautiful reaction. But instead of copper, if you were to put a wire of gold in the same silver nitrate solution, the same solution as before, this time nothing would happen—no…
15 BEST Books on LEADERSHIP
You are watching the book club! Every Wednesday, we handpick the best books to improve your life. The 15 best books on leadership! Welcome to aLux.com, the place where future billionaires come to get inspired. If you’re not subscribed yet, you’re missing…
Worked example: separable differential equation (with taking log of both sides) | Khan Academy
Let’s say we need to find a solution to the differential equation that the derivative of y with respect to x is equal to x squared over e to the y. Pause this video and see if you can have a go at it. I will give you a clue: it is a separable differential…
The TRUTH about Fundrise Real Estate Investing
What’s up you guys? It’s Graham here. So this gets brought up a lot: Fundrise real estate investing with some pretty substantial returns. So what do I think about it? Is it legit? Is it a good way to invest in real estate, or is it just an overly simplifi…