yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions continuous on all real numbers | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Which of the following functions are continuous for all real numbers? So let's just remind ourselves what it means to be continuous, what a continuous function looks like.

A continuous function—let's say that's my Y-axis, that is my X-axis—a function is going to be continuous over some interval if it just doesn't have any, uh, jumps or discontinuities over that or gaps over that interval. So, if it's connected, it for sure has to be defined over that interval without any gaps.

For example, a continuous function could look something like this. This function—let me make that line a little bit thicker—so this function right over here is continuous. It is connected over this interval, the interval that we can see now.

Examples of discontinuous functions over an interval, or non-continuous functions, well, they would have gaps of some kind. They could have some type of an asymptotic discontinuity, so something like that makes it discontinuous. They could have jump discontinuity, something like that. They could just have a gap where they're not defined, so they could have a gap where they're not defined, or maybe they actually are defined there, but it's a removable discontinuity.

So all of these are examples of discontinuous functions. Now, if you want the more mathematical understanding of that—and we've looked at this before—we say that a function f is continuous at some value x equals a if and only if, draw my little two-way arrows here, say if and only if the limit of f of x as x approaches a is equal to the value of the function at a.

So once again, in order to be continuous there, you at least have to be defined there. Now, when you look at these, the one thing that jumps out at me is that in order to be continuous for all real numbers, you have to be defined for all real numbers. And g of x is not defined for all real numbers; it's not defined for negative values of x, and so we would rule this one out.

So let's think about f of x equals e to the x. It is defined for all real numbers, and as we'll see, most of the common functions that you've learned in math, they don't have these strange jumps or gaps or discontinuities. Some of them do—functions like 1/x and things like that—but things like e to the x, it doesn't have any of those.

We could graph e to the x; e to the x looks something like this. It's defined for all real numbers; there's no jumps or gaps of any kind. So this f of x is continuous for all real numbers.

Now, I didn't do a very rigorous proof. You could if you like, but for the sake of this exercise, it's really more about getting this intuitive sense of, like, look, e to the x is defined for all real numbers, and so there's no jumps or gaps here. So it's reasonable to say that it's continuous. But you could do a more rigorous proof if you like as well.

More Articles

View All
The Archer's Paradox in SLOW MOTION - Smarter Every Day 136
Hey, it’s me Destin, welcome back to Smarter Every Day. So in one of the last episodes, I introduced you to a legend with a longbow. He’s from my hometown and his name is Byron Ferguson. He shot an aspirin out of the air in slow motion. But there’s someth…
Easy Photography Life Hack!
Okay, I just learned the greatest life hack. If you see something that you want to take a picture of, but you left your phone at home, don’t worry. Just do this: blindfold yourself for like 30 minutes, and then stare at what you want to take a picture of …
You quit your 9-5…NOW WHAT?!
What’s up, you guys? It’s Graham here. So, as many of you know, I literally read every single one of the comments that’s ever posted on my channel. I read them all, and one of the most common recurring questions I get are comments like, “Graham, I have no…
How to Pronounce Uranus
Hello Internet! In my last video about Pluto, you may have noticed that I said aloud the names of every planet except one: This one. And that was no accident, but rather the result of careful script editing. Because, where I grew up, I learned that the na…
Definite integral of piecewise function | AP Calculus AB | Khan Academy
So we have an f of x right over here, and it’s defined piecewise. For x less than zero, f of x is x plus one. For x greater than or equal to zero, f of x is cosine of pi x. We want to evaluate the definite integral from negative one to one of f of x dx. …
Steve Varsano shows us the art around his office
Hey Steve, I’ve noticed a load of art around the showroom. Can you tell me more about it? Yeah, sure! This is one of my most favorite industry photos: Frank Sinatra and Dean Martin back in about 1970. Really, back in the early days of Las Vegas and the f…