yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions continuous on all real numbers | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Which of the following functions are continuous for all real numbers? So let's just remind ourselves what it means to be continuous, what a continuous function looks like.

A continuous function—let's say that's my Y-axis, that is my X-axis—a function is going to be continuous over some interval if it just doesn't have any, uh, jumps or discontinuities over that or gaps over that interval. So, if it's connected, it for sure has to be defined over that interval without any gaps.

For example, a continuous function could look something like this. This function—let me make that line a little bit thicker—so this function right over here is continuous. It is connected over this interval, the interval that we can see now.

Examples of discontinuous functions over an interval, or non-continuous functions, well, they would have gaps of some kind. They could have some type of an asymptotic discontinuity, so something like that makes it discontinuous. They could have jump discontinuity, something like that. They could just have a gap where they're not defined, so they could have a gap where they're not defined, or maybe they actually are defined there, but it's a removable discontinuity.

So all of these are examples of discontinuous functions. Now, if you want the more mathematical understanding of that—and we've looked at this before—we say that a function f is continuous at some value x equals a if and only if, draw my little two-way arrows here, say if and only if the limit of f of x as x approaches a is equal to the value of the function at a.

So once again, in order to be continuous there, you at least have to be defined there. Now, when you look at these, the one thing that jumps out at me is that in order to be continuous for all real numbers, you have to be defined for all real numbers. And g of x is not defined for all real numbers; it's not defined for negative values of x, and so we would rule this one out.

So let's think about f of x equals e to the x. It is defined for all real numbers, and as we'll see, most of the common functions that you've learned in math, they don't have these strange jumps or gaps or discontinuities. Some of them do—functions like 1/x and things like that—but things like e to the x, it doesn't have any of those.

We could graph e to the x; e to the x looks something like this. It's defined for all real numbers; there's no jumps or gaps of any kind. So this f of x is continuous for all real numbers.

Now, I didn't do a very rigorous proof. You could if you like, but for the sake of this exercise, it's really more about getting this intuitive sense of, like, look, e to the x is defined for all real numbers, and so there's no jumps or gaps here. So it's reasonable to say that it's continuous. But you could do a more rigorous proof if you like as well.

More Articles

View All
The Poverty of Compromise
This idea of questioning things that he, the two you thought were unassailable in a particular domain, for millennia people were wondering about the best way to conceive of what democracy is. Even Plato had this idea of what is democracy, and he had the …
Terms of Trade and the Gains from Trade | AP Macroeconomics | Khan Academy
Let’s imagine a very simple world, as we tend to do in economics, that has two countries that are each capable of producing either pants or shirts, or some combination. So, what we have here are the production possibility curves for each of those countri…
Terminal prepositions | The parts of speech | Grammar | Khan Academy
Hello, Garans. Today I want to talk about ending sentences with prepositions, and I want to tell you straight up—it is totally okay. Like, it is perfectly grammatically correct and sensible and fine to end sentences with prepositions in English. And if yo…
The Crux Episode 1 | Full Episode | National Geographic
Traditionally, climbers are seen as very friendly, lovely people. I love the climbing community, and it’s just so beautiful. Everyone in the competitions really feels like close friends to me; I love the atmosphere. I love the camaraderie. I love my teamm…
The Bill of Rights: an introduction | US government and civics | Khan Academy
The Bill of Rights, as we know it today, were the first 10 amendments to the Constitution. These amendments guaranteed individual liberty to make sure that citizens had a stated expectation for what the government could or could not do to them. You can ki…
15 Reasons You Don't Like Your Job (& What To Do About It)
Can you believe there are people who wake up every morning excited about the work they get to do? They don’t mind putting in the extra hours. Their work feels like their hobby. They’re proud about what they do, and they have great colleagues. When you do …