yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions continuous on all real numbers | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Which of the following functions are continuous for all real numbers? So let's just remind ourselves what it means to be continuous, what a continuous function looks like.

A continuous function—let's say that's my Y-axis, that is my X-axis—a function is going to be continuous over some interval if it just doesn't have any, uh, jumps or discontinuities over that or gaps over that interval. So, if it's connected, it for sure has to be defined over that interval without any gaps.

For example, a continuous function could look something like this. This function—let me make that line a little bit thicker—so this function right over here is continuous. It is connected over this interval, the interval that we can see now.

Examples of discontinuous functions over an interval, or non-continuous functions, well, they would have gaps of some kind. They could have some type of an asymptotic discontinuity, so something like that makes it discontinuous. They could have jump discontinuity, something like that. They could just have a gap where they're not defined, so they could have a gap where they're not defined, or maybe they actually are defined there, but it's a removable discontinuity.

So all of these are examples of discontinuous functions. Now, if you want the more mathematical understanding of that—and we've looked at this before—we say that a function f is continuous at some value x equals a if and only if, draw my little two-way arrows here, say if and only if the limit of f of x as x approaches a is equal to the value of the function at a.

So once again, in order to be continuous there, you at least have to be defined there. Now, when you look at these, the one thing that jumps out at me is that in order to be continuous for all real numbers, you have to be defined for all real numbers. And g of x is not defined for all real numbers; it's not defined for negative values of x, and so we would rule this one out.

So let's think about f of x equals e to the x. It is defined for all real numbers, and as we'll see, most of the common functions that you've learned in math, they don't have these strange jumps or gaps or discontinuities. Some of them do—functions like 1/x and things like that—but things like e to the x, it doesn't have any of those.

We could graph e to the x; e to the x looks something like this. It's defined for all real numbers; there's no jumps or gaps of any kind. So this f of x is continuous for all real numbers.

Now, I didn't do a very rigorous proof. You could if you like, but for the sake of this exercise, it's really more about getting this intuitive sense of, like, look, e to the x is defined for all real numbers, and so there's no jumps or gaps here. So it's reasonable to say that it's continuous. But you could do a more rigorous proof if you like as well.

More Articles

View All
The Triumph and Tragedy of Indian Independence | Podcast | Overheard at National Geographic
So I’d like you to start out by telling me your name and your relationship to me. My name is Lata Roy Chatterjee, and I’m your stepmother. And tell us how old you are and where you were born. I’m, uh, 84 and a half years old, and I was born in Pubna, whic…
Interpret quadratic models: Factored form | Algebra I | Khan Academy
We’re told that Rodrigo watches a helicopter take off from a platform. The height of the helicopter in meters above the ground, t minutes after takeoff, is modeled by… and we see this function right over here. Rodrigo wants to know when the helicopter wil…
Adorable Lemurs Roam Free on This Ancient Island | Short Film Showcase
Nita Terrace Helen Mirren Gandhi, I reckon if Allah to a new litter one potato atlatl. [Music] Kylie, the hero and the Monocacy lying in a field known lon Kenan rotten Atlanta kinds of top Caselli. They would do to flank the chopper; that’ll do it in th…
The importance of networking.
This is the day in the life of a jet broker. I flew out to Switzerland for eBay. For anyone who loves jets, eBay is like being a kid in the candy store. It’s where you’ll find the latest and greatest in jet innovations while providing unparalleled network…
Origins of the Cold War
Hi Dr. Kuts. Hello David. How you doing? I’m doing well. I am excited to learn about this thing we call the Cold War. What is a Cold War, and what makes it different than a hot war? So a Cold War, and in this case, is it’s really, um, it might be a te…
Example identifying the center of dilation
We are told the triangle N prime is the image of triangle N under a dilation. So this is N prime in this red color, and then N is the original; N is in this blue color. What is the center of dilation? And they give us some choices here: choice A, B, C, or…