yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions continuous on all real numbers | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Which of the following functions are continuous for all real numbers? So let's just remind ourselves what it means to be continuous, what a continuous function looks like.

A continuous function—let's say that's my Y-axis, that is my X-axis—a function is going to be continuous over some interval if it just doesn't have any, uh, jumps or discontinuities over that or gaps over that interval. So, if it's connected, it for sure has to be defined over that interval without any gaps.

For example, a continuous function could look something like this. This function—let me make that line a little bit thicker—so this function right over here is continuous. It is connected over this interval, the interval that we can see now.

Examples of discontinuous functions over an interval, or non-continuous functions, well, they would have gaps of some kind. They could have some type of an asymptotic discontinuity, so something like that makes it discontinuous. They could have jump discontinuity, something like that. They could just have a gap where they're not defined, so they could have a gap where they're not defined, or maybe they actually are defined there, but it's a removable discontinuity.

So all of these are examples of discontinuous functions. Now, if you want the more mathematical understanding of that—and we've looked at this before—we say that a function f is continuous at some value x equals a if and only if, draw my little two-way arrows here, say if and only if the limit of f of x as x approaches a is equal to the value of the function at a.

So once again, in order to be continuous there, you at least have to be defined there. Now, when you look at these, the one thing that jumps out at me is that in order to be continuous for all real numbers, you have to be defined for all real numbers. And g of x is not defined for all real numbers; it's not defined for negative values of x, and so we would rule this one out.

So let's think about f of x equals e to the x. It is defined for all real numbers, and as we'll see, most of the common functions that you've learned in math, they don't have these strange jumps or gaps or discontinuities. Some of them do—functions like 1/x and things like that—but things like e to the x, it doesn't have any of those.

We could graph e to the x; e to the x looks something like this. It's defined for all real numbers; there's no jumps or gaps of any kind. So this f of x is continuous for all real numbers.

Now, I didn't do a very rigorous proof. You could if you like, but for the sake of this exercise, it's really more about getting this intuitive sense of, like, look, e to the x is defined for all real numbers, and so there's no jumps or gaps here. So it's reasonable to say that it's continuous. But you could do a more rigorous proof if you like as well.

More Articles

View All
Waste Not, Want Not | The Great Human Race
Whoa! What is that? Look at the bottom of that slope. I see it! Is that an animal? Huh! It’s a baby bushbuck! Look, something attacked this. Oh, look at these marks! It definitely was! Definitely something bit it. It’s bloated. It is bloated. We might no…
Why Buying Coffee Makes You Poor
What’s up, you guys? It’s Graham here. So let’s dive into one of the most controversial and debated topics of financial advice in 2019, and that would be whether or not this cup of coffee is making you poor. That’s right! Today we’re gonna be talking abou…
The Largest Housing Crash Is Coming | Why I Sold
What’s up, guys? It’s Graham here. Now, I usually don’t record informal videos without a whole bunch of charts and graphs and fancy research, but something needs to be said about the current state of the housing market and the direction it’s headed. I do…
Why I have 11 Credit Cards…
What’s up you guys? It’s Graham here. So how ridiculous is this? I now have 11 credit cards! Now I was perfectly happy and perfectly content having 10 credit cards. I really didn’t need another one. But I saw the Credit Shifu, who uploaded a video the oth…
Area between a curve and and the _-axis | AP Calculus AB | Khan Academy
So right over here I have the graph of the function y is equal to 15 / x, or at least I see the part of it for positive values of X. What I’m curious about in this video is I want to find the area not between this curve and the positive x-axis. I want to …
How insurance works | Insurance | Financial literacy | Khan Academy
Let’s say that you have a car that right now is worth about ten thousand dollars. You don’t have ten thousand dollars as a cushion if, by chance, your car were to get totaled, or if it were to get stolen, or something were to happen. You don’t have an ext…