yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Connecting limits and graphical behavior | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So, we have the graph of y is equal to g of x right over here, and I want to think about what is the limit as x approaches 5 of g of x. Well, we've done this multiple times. Let's think about what g of x approaches as x approaches 5.

From the left, g of x is approaching negative 6. As x approaches 5 from the right, g of x looks like it's approaching negative 6. So, a reasonable estimate, based on looking at this graph, is that as x approaches 5, g of x is approaching negative 6.

And it's worth noting that that's not what g of 5 is. g of 5 is a different value. But the whole point of this video is to appreciate all that a limit does. A limit only describes the behavior of a function as it approaches a point; it doesn't tell us exactly what's happening at that point, what g of 5 is, and it doesn't tell us much about the rest of the function, about the rest of the graph.

For example, I could construct many different functions for which the limit as x approaches 5 is equal to negative 6, and they would look very different from g of x. For example, I could say the limit of f of x as x approaches 5 is equal to negative 6, and I can construct an f of x that does this, that looks very different than g of x.

And in fact, if you're up for it, pause this video and see if you could do the same. If you have some graph paper or even just sketch it. Well, the key thing is that the behavior of the function as x approaches 5 from both sides, from the left and the right, it has to be approaching negative 6.

So, for example, a function that looks like this—let me draw f of x—a function that looks like this and is even defined right over there and then does something like this, that would work. As we approach from the left, we're approaching negative six; as we approach from the right, we are approaching negative six.

You could have a function like this—let's say the limit let's call it h of x as x approaches 5 is equal to negative 6. You could have a function like this; maybe it's defined up to there, then you have a circle there, and then it keeps going.

Maybe it's not defined at all for any of these values, and then, maybe down here, it is defined for all x values greater than or equal to 4, and it just goes right through negative 6. So, notice all of these functions as x approaches 5. They all have the limit defined, and it's equal to negative 6, but these functions all look very, very, very different.

Now, another thing to appreciate is for a given function—and let me delete these—oftentimes we're asked to find the limits as x approaches some type of an interesting value. So, for example, x approaches 5. 5 is interesting right over here because we have this point of discontinuity, but you could take the limit on an infinite number of points for this function right over here.

You could say the limit of g of x as x approaches—not x equals—as x approaches 1. What would that be? Positive? Try to figure it out. Let's see: as x approaches 1 from the left-hand side, it looks like we are approaching this value here, and as x approaches 1 from the right-hand side, it looks like we are approaching that value there.

So that would be equal to g of 1. That is equal to g of 1 based on that might be a reasonable conclusion to make, looking at this graph. If we were to estimate that g of 1 looks like it's approximately negative 5.1 or 5.2, negative 5.1.

We could find the limit of g of x as x approaches pi. So, pi is right around there. As x approaches pi from the left, we're approaching that value, which just looks actually pretty close to the one we just thought about, and as we approach from the right, we're approaching that value.

And once again, in this case, this is going to be equal to g of pi. We don't have any interesting discontinuities there or anything like that.

So, there are two big takeaways here. You can construct many different functions that would have the same limit at a point, and for a given function, you can take the limit at many different points. In fact, an infinite number of different points.

And it's important to point that out—no pun intended—because oftentimes we get used to seeing limits only at points where something strange seems to be happening.

More Articles

View All
How To Upgrade Your Friends
They say that if you hang out with five millionaires, you will be the sixth. But this is also true when it comes to surrounding yourself with intelligent people. Whether we accept it or not, we are the average of the five people we spend most of our time …
Trying to Catch a 1,000 MPH Baseball - Smarter Every Day 247
Hey, it’s me Destin. Welcome back to “Smarter Every Day.” This video is awesome because we’re finally going to shoot it at stuff. And if you don’t know what I’m talking about, in a previous episode of “Smarter Every Day,” we fulfilled an important dream o…
Drew Houston - CEO and Founder of Dropbox | Entrepreneurship | Khan Academy
So, uh, excited to have Drew Hon here. Uh, you know, a very well-known figure amongst kind of our team out here. Um, and for those who are maybe watching this video later, uh, founder of Dropbox. How many, how many billions of people do you have using? I …
Hiroki Takeuchi
Now on to the next speaker this afternoon. Heroi is a co-founder and CEO of Go Cardless, which is the UK’s leading direct debit provider. They now serve more businesses than any other direct debit provider, and they’re also expanding to serve Europe. Hero…
Visualizing marginal utility MU and total utility TU functions
What we’re going to do is think about the graphs of marginal utility and total utility curves. And so right over here I have a table showing me the marginal utility I get from getting tennis balls. And so it says look, if I have no tennis balls and I’m no…
Buying Real Estate for only $100: REITs vs Rental Property
So here’s how you can invest in real estate with as little as $100. Not clickbait, but for real though, this is a way that you can invest in real estate with pretty much whatever money you have saved up right now without doing any of the work yourself. Th…