yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Connecting limits and graphical behavior | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So, we have the graph of y is equal to g of x right over here, and I want to think about what is the limit as x approaches 5 of g of x. Well, we've done this multiple times. Let's think about what g of x approaches as x approaches 5.

From the left, g of x is approaching negative 6. As x approaches 5 from the right, g of x looks like it's approaching negative 6. So, a reasonable estimate, based on looking at this graph, is that as x approaches 5, g of x is approaching negative 6.

And it's worth noting that that's not what g of 5 is. g of 5 is a different value. But the whole point of this video is to appreciate all that a limit does. A limit only describes the behavior of a function as it approaches a point; it doesn't tell us exactly what's happening at that point, what g of 5 is, and it doesn't tell us much about the rest of the function, about the rest of the graph.

For example, I could construct many different functions for which the limit as x approaches 5 is equal to negative 6, and they would look very different from g of x. For example, I could say the limit of f of x as x approaches 5 is equal to negative 6, and I can construct an f of x that does this, that looks very different than g of x.

And in fact, if you're up for it, pause this video and see if you could do the same. If you have some graph paper or even just sketch it. Well, the key thing is that the behavior of the function as x approaches 5 from both sides, from the left and the right, it has to be approaching negative 6.

So, for example, a function that looks like this—let me draw f of x—a function that looks like this and is even defined right over there and then does something like this, that would work. As we approach from the left, we're approaching negative six; as we approach from the right, we are approaching negative six.

You could have a function like this—let's say the limit let's call it h of x as x approaches 5 is equal to negative 6. You could have a function like this; maybe it's defined up to there, then you have a circle there, and then it keeps going.

Maybe it's not defined at all for any of these values, and then, maybe down here, it is defined for all x values greater than or equal to 4, and it just goes right through negative 6. So, notice all of these functions as x approaches 5. They all have the limit defined, and it's equal to negative 6, but these functions all look very, very, very different.

Now, another thing to appreciate is for a given function—and let me delete these—oftentimes we're asked to find the limits as x approaches some type of an interesting value. So, for example, x approaches 5. 5 is interesting right over here because we have this point of discontinuity, but you could take the limit on an infinite number of points for this function right over here.

You could say the limit of g of x as x approaches—not x equals—as x approaches 1. What would that be? Positive? Try to figure it out. Let's see: as x approaches 1 from the left-hand side, it looks like we are approaching this value here, and as x approaches 1 from the right-hand side, it looks like we are approaching that value there.

So that would be equal to g of 1. That is equal to g of 1 based on that might be a reasonable conclusion to make, looking at this graph. If we were to estimate that g of 1 looks like it's approximately negative 5.1 or 5.2, negative 5.1.

We could find the limit of g of x as x approaches pi. So, pi is right around there. As x approaches pi from the left, we're approaching that value, which just looks actually pretty close to the one we just thought about, and as we approach from the right, we're approaching that value.

And once again, in this case, this is going to be equal to g of pi. We don't have any interesting discontinuities there or anything like that.

So, there are two big takeaways here. You can construct many different functions that would have the same limit at a point, and for a given function, you can take the limit at many different points. In fact, an infinite number of different points.

And it's important to point that out—no pun intended—because oftentimes we get used to seeing limits only at points where something strange seems to be happening.

More Articles

View All
Flat Earth vs. Round Earth | Explorer
You think that with the beautiful photographs that we have of our round blue planet, it would convince any doubters. But there are still some who insist that the world is flat. Correspondent Mariana van Zeller discovers more about this fast-growing moveme…
Phenotype plasticity | Heredity | AP Biology | Khan Academy
The folks you see in this picture are two NASA astronauts who also happen to be identical twins. On the left here, this is Mark Kelly; you can see his name on his patch right over there. And then this is Scott Kelly. The reason why we want to look at the…
Shifts in demand for labor | Microeconomics | Khan Academy
We are now going to continue our study of labor markets, and in this video we’re going to focus on the demand curve for labor. So, let’s imagine that we’re talking about a market for people who work in the pant-making industry. So each of these firms righ…
Psychology of money part 1 | Financial goals | Financial Literacy | Khan Academy
Hi everyone! So here, what we’re going to do in this video is talk about the psychology of money. I’m going to talk about different types of things that probably all of us have fallen into at one point or another, and just think about why they’re happenin…
Constructing exponential models: half life | Mathematics II | High School Math | Khan Academy
We’re told carbon 14 is an element which loses exactly half of its mass every 5,730 years. The mass of a sample of carbon 14 can be modeled by a function m which depends on its age t in years. We measure that the initial mass of a sample of carbon 14 is 7…
Economic profit for a monopoly | Microeconomics | Khan Academy
In this video, we’re going to think about the economic profit of a monopoly firm. To do that, we’re going to draw our standard price and quantity axes. So, that’s quantity and this is price, and this is going to of course be in dollars. We can first thin…