yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Connecting limits and graphical behavior | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So, we have the graph of y is equal to g of x right over here, and I want to think about what is the limit as x approaches 5 of g of x. Well, we've done this multiple times. Let's think about what g of x approaches as x approaches 5.

From the left, g of x is approaching negative 6. As x approaches 5 from the right, g of x looks like it's approaching negative 6. So, a reasonable estimate, based on looking at this graph, is that as x approaches 5, g of x is approaching negative 6.

And it's worth noting that that's not what g of 5 is. g of 5 is a different value. But the whole point of this video is to appreciate all that a limit does. A limit only describes the behavior of a function as it approaches a point; it doesn't tell us exactly what's happening at that point, what g of 5 is, and it doesn't tell us much about the rest of the function, about the rest of the graph.

For example, I could construct many different functions for which the limit as x approaches 5 is equal to negative 6, and they would look very different from g of x. For example, I could say the limit of f of x as x approaches 5 is equal to negative 6, and I can construct an f of x that does this, that looks very different than g of x.

And in fact, if you're up for it, pause this video and see if you could do the same. If you have some graph paper or even just sketch it. Well, the key thing is that the behavior of the function as x approaches 5 from both sides, from the left and the right, it has to be approaching negative 6.

So, for example, a function that looks like this—let me draw f of x—a function that looks like this and is even defined right over there and then does something like this, that would work. As we approach from the left, we're approaching negative six; as we approach from the right, we are approaching negative six.

You could have a function like this—let's say the limit let's call it h of x as x approaches 5 is equal to negative 6. You could have a function like this; maybe it's defined up to there, then you have a circle there, and then it keeps going.

Maybe it's not defined at all for any of these values, and then, maybe down here, it is defined for all x values greater than or equal to 4, and it just goes right through negative 6. So, notice all of these functions as x approaches 5. They all have the limit defined, and it's equal to negative 6, but these functions all look very, very, very different.

Now, another thing to appreciate is for a given function—and let me delete these—oftentimes we're asked to find the limits as x approaches some type of an interesting value. So, for example, x approaches 5. 5 is interesting right over here because we have this point of discontinuity, but you could take the limit on an infinite number of points for this function right over here.

You could say the limit of g of x as x approaches—not x equals—as x approaches 1. What would that be? Positive? Try to figure it out. Let's see: as x approaches 1 from the left-hand side, it looks like we are approaching this value here, and as x approaches 1 from the right-hand side, it looks like we are approaching that value there.

So that would be equal to g of 1. That is equal to g of 1 based on that might be a reasonable conclusion to make, looking at this graph. If we were to estimate that g of 1 looks like it's approximately negative 5.1 or 5.2, negative 5.1.

We could find the limit of g of x as x approaches pi. So, pi is right around there. As x approaches pi from the left, we're approaching that value, which just looks actually pretty close to the one we just thought about, and as we approach from the right, we're approaching that value.

And once again, in this case, this is going to be equal to g of pi. We don't have any interesting discontinuities there or anything like that.

So, there are two big takeaways here. You can construct many different functions that would have the same limit at a point, and for a given function, you can take the limit at many different points. In fact, an infinite number of different points.

And it's important to point that out—no pun intended—because oftentimes we get used to seeing limits only at points where something strange seems to be happening.

More Articles

View All
My Life As an Adventure Filmmaker and Photographer (Part 1) | Nat Geo Live
I was just down in Antarctica on a really incredible expedition. We’re doing a climate change story on the wildlife and the conditions, and, uh, a fishing story as well on what’s happening down in Antarctica. The last 5 days of the journey, we crossed th…
Fire Aboard the Hot Tuna | Wicked Tuna
[Music] Oh boy, all right. Well, one someone will get one here. Somebody will win the lottery here today. Whoa! Something’s on fire! Something’s on fire! What? Something’s on fire! Where? I don’t know; I smell it. I smell electrical burn. I smell it too.…
Equivalent ratios in similar shapes | Transformational geometry | Grade 8 (TX) | Khan Academy
We’re told that quadrilateral ABCD is similar to quadrilateral STUV. So what we’re going to do in this video, this isn’t a question; this is just a statement right over here. But what we’re going to do is think about what does similarity mean? What does i…
Best Spot in the Microwave? - Smarter Every Day 6
[Music] Okay, it’s me, Destin. I am here with Mike Simons at the National Electronics Museum, and he’s going to show us something that we interact with every day that you probably didn’t know. So, what do you got for us, Mike? (Mike) We have a microwav…
Reddit Disinformation & How We Beat It Together - Smarter Every Day 232
Hey, SV Dustin! Welcome back to Smarter Every Day. Unfortunately, now is the time for the video about disinformation on Reddit, the front page of the internet. It’s been documented by both the European Union and the United States of America that Russia, I…
Warren Buffett: How to invest your first $10,000
So whether you have $10,000 to invest or 10 million, you’re going to learn a ton from this video. Interesting fact about investing: Legend Warren Buffett that you may not already know. Despite currently being a billionaire many times over, Warren Buffett…