yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

This is what happens when you hit the gas - Shannon Odell


3m read
·Nov 8, 2024

In 2015, two men drove a Volkswagen across the continental United States on just over 100 gallons of fuel. Their 81-mile-per-gallon performance doubled the car’s estimated fuel rating and set the record for the lowest fuel consumption ride of a diesel car. The duo call themselves hypermilers and are experts in techniques that maximize a car’s fuel efficiency, such as the pulse-and-glide.

In the pulse, drivers accelerate slowly until they’re traveling slightly above their intended speed. They then slowly release the throttle and glide until they’re slightly below, and repeat. To understand why this strategy saves fuel, we first need to unpack what exactly is going on beneath a car's hood. Non-electric cars run on internal combustion engines, or ICEs. Cars are often advertised as sporting a 4-, 6-, or 8-cylinder engine, which refers to this device's main components.

Within each of these cylinders is a piston, which moves up and down, spinning a bar known as a crankshaft, effectively converting linear motion into a rotary motion that can drive the wheels. What powers these pistons’ movements is what gives these engines their namesake: combustion. As the piston lowers, air and fuel are sprayed into the cylinder’s chamber. Then, as the piston rises, this air and fuel mixture is compressed. In gasoline engines, a spark is introduced, igniting the gas.

In diesel engines, the compression alone creates a mini explosion. This combustion causes an immediate increase in temperature and pressure, propelling the piston down, as it starts the cycle again. The gas pedal controls the amount of air and subsequent fuel released into the chamber. The more fuel in the chamber, the more powerful the combustion, making the crankshaft rotate faster. Driving down the highway, ICE cars spark thousands of blasts per minute.

But explosion-powered driving is pretty inefficient, as much of the energy generated is lost to heat. In fact, only 16 to 25% goes towards moving the wheels. These explosions also create CO2, and ICE engines produce 15% of the total global carbon emissions. The pulse-and-glide can increase efficiency for two reasons. First, when accelerating to higher speeds during the pulse, the engine works at a higher efficiency compared to traveling at a constant lower speed.

And second, modern car engines shut off fuel injection or idle when decelerating. Meaning that as the car glides, the wheels are driven by inertial energy, rather than combustion, ultimately saving fuel. But even at their peak performance, ICE hypermilers can’t compete with the true champion of fuel efficiency rides: the electric vehicle. Many EVs run on induction motors, which have two main parts: a stator and a rotor.

The stator is a series of rings, with copper wires wrapped around it. By conducting electricity at variable rates, these wires create a rotating magnetic field. This field induces the rotor with electrical current, causing it to spin and driving the motion of the wheels. For EVs, pressing on the accelerator changes the frequency of current driven into the wires of the stator, in turn increasing the rate at which the rotor spins.

By utilizing battery power rather than gasoline, 65 to 69% of the energy consumed by EVs goes directly to moving the wheels. And since EVs don't create explosions, fewer parts are needed below the hood. While a typical ICE vehicle has over 2,000 moving parts to help contain, cool, and maintain combustion, a typical EV has about 20. EVs are completely changing the hypermiling game as drivers compete to travel the farthest on the fewest kilowatt-hours.

And records will likely only get more impressive, as the design of EV motors allows for the introduction of innovative energy-saving devices. For example, most EVs utilize regenerative braking, where energy normally lost to friction is conserved. As the car slows, the electric motor operates in reverse, capturing the vehicle’s kinetic energy to recharge the battery. Some companies are even equipping EVs with rooftop solar panels, further increasing their range.

Since they don’t burn fuel, EVs have zero tailpipe emissions. That’s not to say they’re always carbon neutral. EVs require regular charging of their batteries, meaning their emission profile is only as clean as the electric utility they plug into. So as global grids continue to shift towards renewable sources, EVs are also becoming greener, making them an even more attractive, hyper-efficient option.

More Articles

View All
Money: Humanity's Biggest Illusion
If I asked you the question, “What is man’s greatest invention?” what would your answer be? There’s a lot of options. Would it be fire because it gives us warmth, protection, and the ability to cook our meals? Or perhaps you would pick the wheel because i…
How to Retire Early from Real Estate Investing
What’s up you guys, it’s Graham here. So, this is a really fun video for me to make because we’re gonna be talking about my favorite topics of all time in one video. That’s right! We got real estate investing, passive income, financial independence, retir…
15 Signs You’re NOT COOL
We are not talking about people who use the wrong emojis here, but there’s a case to be made about some of you not being as cool as you think you are. So, let’s put it to the test and see how many of these you tick off. Here are 15 signs you’re not cool. …
How To Apply Stoic Wisdom For Your Everyday Life
Most people don’t care to admit it, but believe us when we say life is difficult. Not acknowledging this fact will make you ignorant and in time inevitably miserable. Philosophers realized this a long time ago. In fact, philosophy was born in order to ans…
The Sun Sneeze Gene
I am a sun sneezer, which is also known as having the photic sneeze reflex, or the autosomal dominant compelling helio-ophthalmic outbursts syndrome. Which basically means if I go from a dark area into somewhere that’s brightly lit - you know, like, looki…
Marginal and conditional distributions | Analyzing categorical data | AP Statistics | Khan Academy
Let’s say that we are trying to understand a relationship in a classroom of 200 students between the amount of time studied and the percent correct. So, what we could do is we could set up some buckets of time studied and some buckets of percent correct. …