yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The beginning of the universe, for beginners - Tom Whyntie


2m read
·Nov 9, 2024

Translator: Andrea McDonough
Reviewer: Bedirhan Cinar

The universe, rather beautiful, isn't it? It's quite literally got everything, from the very big to the very small. Sure, there are some less than savory elements in there, but on the whole, scholars agree that its existence is probably a good thing. Such a good thing that an entire field of scientific endeavor is devoted to its study. This is known as cosmology.

Cosmologists look at what's out there in space and piece together the tale of how our universe evolved: what it's doing now, what it's going to be doing, and how it all began in the first place. It was Edwin Hubble who first noticed that our universe is expanding, by noting that galaxies seem to be flying further and further apart. This implied that everything should have started with the monumental explosion of an infinitely hot, infinitely small point. This idea was jokingly referred to at the time as the "Big Bang," but as the evidence piled up, the notion and the name actually stuck.

We know that after the Big Bang, the universe cooled down to form the stars and galaxies that we see today. Cosmologists have plenty of ideas about how this happened. But we can also probe the origins of the universe by recreating the hot, dense conditions that existed at the beginning of time in the laboratory. This is done by particle physicists.

Over the past century, particle physicists have been studying matter and forces at higher and higher energies. Firstly with cosmic rays, and then with particle accelerators, machines that smash together subatomic particles at great energies. The greater the energy of the accelerator, the further back in time they can effectively peek. Today, things are largely made up of atoms, but hundreds of seconds after the Big Bang, it was too hot for electrons to join atomic nuclei to make atoms. Instead, the universe consisted of a swirling sea of subatomic matter.

A few seconds after the Big Bang, it was hotter still, hot enough to overpower the forces that usually hold protons and neutrons together in atomic nuclei. Further back, microseconds after the Big Bang, and the protons and neutrons were only just beginning to form from quarks, one of the fundamental building blocks of the standard model of particle physics. Further back still, and the energy was too great even for the quarks to stick together.

Physicists hope that by going to even greater energies, they can see back to a time when all the forces were one and the same, which would make understanding the origins of the universe a lot easier. To do that, they'll not only need to build bigger colliders, but also work hard to combine our knowledge of the very, very big with the very, very small and share these fascinating insights with each other and with, well, you. And that's how it should be! Because, after all, when it comes to our universe, we're all in this one together.

More Articles

View All
Why You Need To Find Significance
Hey there, Alexa, and welcome back to Honest Talks, a series where we talk about things that we find intriguing and you might as well. In this video, we’re going to talk about probably one of the most important problems that you as an individual have to s…
Charlie Munger’s Final Warning for Investors in 2024
It’s a radically different world from the world we started in. I think it’s going to get tougher. That was Charlie Munger speaking at the Berkshire Hathaway shareholders’ meeting earlier this year. I was there, sitting alongside tens of thousands of peopl…
Rob Riggle Ice Climbing in Iceland | Running Wild With Bear Grylls
BEAR GRYLLS: OK, Rob. Your front points– your crampons are your main weight-bearing things. Good lord. BEAR GRYLLS (VOICEOVER): Comedian Rob Riggle and I are in a race against time, searching to find a case of supplies before nightfall. But first, we’ve …
15 Habits You Need To Stop Doing Immediately
Here’s a hard pill to swallow: we’ve all got 24 hours in a day. So how is it that some manage to find success while others struggle in despair? Well, it all boils down to one thing: habits. Make no mistake, what you do on a daily basis will dictate your d…
Ionic bonds | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
Most of what we’ve talked about so far has been atoms in isolation. We have thought about the number of electrons and protons and neutrons and the electron configuration of atoms. But atoms don’t just operate in isolation. If that were the case, the whole…
Simpson's index of diversity | Ecology | AP Biology | Khan Academy
So in this table here, we have two different communities: Community One and Community Two. Each of them contains three different species, and we see the populations of those three different species. We also see that the total number of individuals in each…