yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Electromagnetism | Forces at a distance | Middle school physics | Khan Academy


3m read
·Nov 10, 2024

You know what a magnet is, but did you know that some magnets can be turned on and off? One type of temporary magnet is called an electromagnet. So what is electromagnetism? Well, the hint is in the name itself: Electro for electrical and magnet for, well, magnet.

Let's take a moment to look at the definition of what an electromagnet is. Electromagnets are materials that become magnets in the presence of electricity. But how does that even happen? Well, it turns out that electrically charged particles in motion actually have small magnetic fields around them. So if we run electricity through a wire, a magnetic field will be created around the wire.

Now we can control the strength of this magnetic field in a couple of ways. We can move more electric charges through the wire at a faster rate, and we do this by increasing the electrical current. The second way is to increase the density of the charged particles, and we can do this by looping the wire into a coil. This gives us more charged particles with magnetic fields in a small space, strengthening the magnetic force.

The other thing we can control with electromagnets is the direction of the magnetic field, and we can do this by changing the direction of the electricity. So if we go back to this wire example from earlier and change the direction of the electricity running through that wire, well, the magnetic fields will also change direction. This makes electromagnets quite different from permanent magnets.

So let's take a look at that and compare permanent magnets to electromagnets. Electromagnets are typically made of loops of wire in a coil. The wire is typically made of metal, like copper, and wrapped around pieces of metal like iron, nickel, or cobalt. This is different from a permanent magnet because permanent magnets don't need this wire. Permanent magnets also have fixed poles; you can't change the North and South poles on these magnets.

But as we now know, for electromagnets, we can change these poles by changing the direction of the electrical current. So if we have an electromagnet with a North and South Pole that looks like this and a current flowing in this direction, well, we can change the poles and the direction of the current. Permanent magnets have a fixed strength, but we just talked about how we can change the strength of electromagnets. So electromagnets have adjustable strength.

Finally, electromagnets need a power source in order to generate the electricity required to produce magnetic fields. Permanent magnets do not need a power source, but this means that we can also turn electromagnets on and off, which is pretty cool when you think about it. On the other hand, permanent magnets are always on.

Now you might be thinking, if electrical charge can affect magnetism, can magnetism affect electrical charge? Absolutely! Let's look at how we can do that. The only way to do this is by changing the magnetic field around the charged particles. This can be done by moving magnets closer or further away from the particles or by spinning the magnets.

In fact, spinning magnets is how most of the electricity we use in cities and homes is generated. A turbine spins a magnet inside a coil to produce electricity, and since electromagnets need a power source, this turbine is powered by wind. So you can see why electromagnetism is an incredibly important force.

And this isn't the only important application of it; we use electromagnets in all sorts of other applications, from motors to speakers and even medical scanners.

More Articles

View All
How to Make Time for Language Learning with a Full-Time Job
If you have multiple responsibilities in life, such as juggling your job, maintaining your health and wellness, trying to communicate and socialize with your partner, friends, and family, and also if you struggle to find time to squeeze in language learni…
WARNING: The LARGEST Wealth Transfer JUST STARTED
What’s up, Graham? It’s guys here. So, throughout the last year, we’ve seen the great resignation, where the number of workers who quit their jobs broke an all-time record, the great reset, which claimed that by 2030 you’ll own nothing and be happy, and t…
Watch Expert Reveals: The Secret Market of Million-Dollar Timepieces (Pt.1)
There’s only one word for what happened: Game Changer. It’s going to affect every aspect of the watch world, every attribute. The one thing I know with certainty is, Sonia and John, nothing happens overnight in the watch industry. This is the slowest movi…
Warren Buffett: MAJOR Updates from the Berkshire Hathaway Shareholders Meeting 2023
Well, we made it everyone! I’m here in Omaha with Hamish, and just a few days ago we were lucky enough to go to the Berkshire Hathaway annual shareholders meeting to get all the latest news from the man himself, Mr. Warren Buffett. And of course, the real…
The 5 WORST MISTAKES you can make if the Real Estate Market DROPS
What’s up you guys? It’s Graham here. So, I think we all know that inevitably, at some point in the future, the real estate market will drop in price. Whether that’s a few months from now, a few years from now, maybe a decade from now, maybe the market go…
Calculations using Avogadro's number (part 2) | Chemistry | Khan Academy
Let’s solve a few numerical on Avogadro number and moles. Here’s the first one: how many glucose molecules are in 2.37 moles of glucose? Let’s quickly remind ourselves what moles are. Moles are like dozens. Just like how one dozen equals 12, a mole repre…