yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating composite functions: using tables | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

  • [Voiceover] So we have some tables here that give us what the functions f and g are when you give it certain inputs. So, when you input negative four, f of negative four is 29. That's going to be the output of that function. So we have that for both f and g, and what I want to do is evaluate two composite functions. I want to evaluate f of g of zero, and I want to evaluate g of f of zero.

So like always, pause the video and see if you can figure it out. Let's first think about f of g of zero. F of g of zero. What is this all about? Actually let me use multiple colors here. F of g of zero. Well, this means that we're going to evaluate g at zero, so we're gonna input zero into g. Do it in that. So we're gonna input zero into our function g, and we're going to output, whatever we output is going to be g of zero. I'll write it right over here, and then we're going to input that into our function f. We're going to input that into our function f, and whatever I output then is going to be f of g of zero. F of g of zero. F of g of zero. I wrote these small here so we have space for the actual values.

So first let's just evaluate, and if you are now inspired, pause the video again and see if you can solve it. Although, if you solved it the first time, you don't have to do that now. What's g of zero? Well, when we input x equals zero, we get g of zero is equal to five. So g of zero is five. So that is five. So we're now going to input five into our function f. We're essentially going to evaluate f of five. So when you input five into our function. I'm gonna do it in this brown color. When you input x equals five into f, you get the function f of five is equal to 11. So this is going to be 11.

So, f of g of zero is equal to 11. Now, let's do g of f of zero. So now let's evaluate. I'll do this is different colors. G, maybe I'll use those same two colors actually. So now we're going to evaluate g of f of zero. G of f of zero, and the key realization is you wanna go within the parenthesis. Evaluate that first so then you can evaluate the function that's kind of on the outside.

So here we're going to take zero as an input into the function f, and then whatever that is, that f of zero, we're going to input into our function g. We're going to input into our function g, and what we're going to be, and then the output of that is going to be g of f of zero. So, let's see, what is f of zero? You see over here when our input is zero, this table tells us that f of zero is equal to one. So f of zero is equal to one. F of zero is equal to one.

So now we use one as an input into g. We're now evaluating g of one, or I can just write this. This is the same thing as g of one. G of one. Once again, why was that? 'Cause f of zero is equal to, f of zero is equal to one. And let me, I wrote those parenthesis too far away from the g. This is the same thing as g of one. Because once again f of zero is one.

Now what is g of one? Well, when I input one into our function g, I get g of one is equal to eight. So this is going to be equal, this is equal to eight, and we're done. And notice these are different values, because these are different composite functions. F of g of zero is 11, and g of f of zero is eight.

More Articles

View All
Building a Gym with Reusable Materials | Life Below Zero
♪ For me, I got to get my poop, so to speak, in a square. Tighten it up so that I’m super Sue again. But how do I do that? These are the two overflow tents, and I’m not gonna have people using them for quite a while. So I want to annex this one and make i…
Supersized Slow-Mo Slinky Drop
[Applause] You know what’s been popular, Rod? What’s that? Our Slinky Drop video! That is popular, isn’t it? Yeah. Do you want to do another Slinky drop? That’s not a slinky. This is a slinky. That is an excellent slinky. We should drop that one…
The early Temperance movement - part 2
Hey, it’s Becca, and this is Temperance Part Two. Um, in this video, I’ll be talking more about how exactly, over the course of the 1830s until mostly the 1860s, the temperance movement took root in America and how it became this national phenomenon. So,…
How To Be Alone | 4 Healthy Ways
He who sits alone, sleeps alone, and walks alone, who is strenuous and subdues himself alone, will find delight in the solitude of the forest. - The Buddha. Some people avoid solitude like the plague. Others love being alone and thrive best in solitude w…
Length of a trip in 24 hour time | Math | Khan Academy
Hello! So we’re told Colette rides her bike home from school every afternoon. She leaves school at 14:55 and arrives home at 15:25. How long does she ride her bike? So pause this video like always and see if you can answer that question: how long is her b…
War is Madness | A Stoic Warning to the World
Man, naturally the gentlest class of being, is not ashamed to revel in the blood of others, to wage war, and to entrust the waging of war to his sons, when even dumb beasts and wild beasts keep the peace with one another. The ancient Greeks and Romans wer…