yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Drawing particulate models of reaction mixtures | Chemical reactions | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

In a previous video, we used a particulate model like this to understand a reaction—not just understand the reaction, but to balance the chemical reaction as well. When I hand drew these particles, the atoms in this particulate model here, I tried to draw it pretty close to their actual relative sizes. Carbon atoms are a little bit bigger than oxygen atoms, and they're both a lot bigger than hydrogen atoms.

What we're going to do in this video is extend our understanding using a particulate model to start to visualize what actually might go on in a mixture of some of these reactant molecules. So, what I have here on the left-hand side are the various molecules. I have two methane molecules here, and I have three water molecules. What I want to do with you is draw what we would expect to see after the reaction. I encourage you, like always, to pause this video and see if you can have a go at that—maybe with a pencil and paper—at least just try to imagine it in your head before I do this with you.

All right, now let's do this together. Now we know that for every methane and every water, we're going to produce one carbon monoxide and three molecular hydrogens. Each of those molecules of hydrogen has two hydrogens in them. So let's just say that this one and this one react; they're going to produce one carbon monoxide. I'm going to try to draw the relative sizes roughly right, so one carbon monoxide, and then they're going to produce six hydrogen atoms that are going to be in three hydrogen molecules. So let’s do that: that’s two and four, and then I’ll just do one here, and then six.

All right, so I took care of this one and this one, and now we can imagine that maybe this water molecule reacts with this methane molecule, and so that would produce another carbon monoxide. Let me draw that roughly at the right size—another carbon monoxide molecule and three more hydrogen molecules or, for a total of six more hydrogens. So that's one and two, and three.

And now we have this water right over here that had no one to react with in this situation—had no partner—and so that's just going to be a leftover reactant molecule. So let me just draw it right over here. So that water could be right over here, and so this was a useful way of starting to visualize what might be going on. Remember, this is happening at a very high temperature; they’re all bouncing around, etc. And then, when they react, you might get this. But then this water molecule has no one to react to, so it is—you could view it as a leftover after the reaction.

More Articles

View All
12 STOIC PRINCIPLES FOR LIFE, LISTEN TO THIS THEY WILL PRIORITIZE YOU | STOICISM INSIGHTS
Have you ever wondered why, in a world overflowing with advice on how to live your best life, we still find ourselves grappling with feelings of inadequacy, anxiety, and unfulfillment? It’s like we’re all on this relentless quest for happiness, yet it oft…
Zambia’s National Handball Team Dreams of Olympic Gold in 2020 | Short Film Showcase
[Applause] Yeah, a maternity. We should let not a dream die as a dream. So we want to play at the Olympics. The boys want to play at the Olympics. A Masada mundo. I play left wing on the Zambian actual number on bottom. Yes, I’ll be turning 20 on 18th Oc…
The Worth of Water | National Geographic
You know, there’s a saying: even if you are next to a river of water, save each drop because you don’t know whether there will be a drop tomorrow. The more people on Earth, the less available water we’re going to have to drink. The most important thing is…
Differentiating polynomials example | Derivative rules | AP Calculus AB | Khan Academy
So I have the function f of X here, and we’re defining it using a polynomial expression. What I would like to do here is take the derivative of our function, which is essentially going to make us take a derivative of this polynomial expression, and we’re …
Geometric series as a function | Infinite sequences and series | AP Calculus BC | Khan Academy
So we have this function that’s equal to two minus eight x squared plus 32 x to the fourth minus 128 x to the sixth, and just keeps going and going. So it’s defined as an infinite series, and what I want to explore in this video is: is there another way t…
Calculations using Avogadro's number (part 1) | Chemistry | Khan Academy
I have about 3.21 grams of sulfur powder over here. My question to you is, how many atoms of sulfur are there? At first, this question sounds ridiculous. I mean, there’s going to be lots and lots of atoms. How in the world are we going to count that? That…