yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Drawing particulate models of reaction mixtures | Chemical reactions | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

In a previous video, we used a particulate model like this to understand a reaction—not just understand the reaction, but to balance the chemical reaction as well. When I hand drew these particles, the atoms in this particulate model here, I tried to draw it pretty close to their actual relative sizes. Carbon atoms are a little bit bigger than oxygen atoms, and they're both a lot bigger than hydrogen atoms.

What we're going to do in this video is extend our understanding using a particulate model to start to visualize what actually might go on in a mixture of some of these reactant molecules. So, what I have here on the left-hand side are the various molecules. I have two methane molecules here, and I have three water molecules. What I want to do with you is draw what we would expect to see after the reaction. I encourage you, like always, to pause this video and see if you can have a go at that—maybe with a pencil and paper—at least just try to imagine it in your head before I do this with you.

All right, now let's do this together. Now we know that for every methane and every water, we're going to produce one carbon monoxide and three molecular hydrogens. Each of those molecules of hydrogen has two hydrogens in them. So let's just say that this one and this one react; they're going to produce one carbon monoxide. I'm going to try to draw the relative sizes roughly right, so one carbon monoxide, and then they're going to produce six hydrogen atoms that are going to be in three hydrogen molecules. So let’s do that: that’s two and four, and then I’ll just do one here, and then six.

All right, so I took care of this one and this one, and now we can imagine that maybe this water molecule reacts with this methane molecule, and so that would produce another carbon monoxide. Let me draw that roughly at the right size—another carbon monoxide molecule and three more hydrogen molecules or, for a total of six more hydrogens. So that's one and two, and three.

And now we have this water right over here that had no one to react with in this situation—had no partner—and so that's just going to be a leftover reactant molecule. So let me just draw it right over here. So that water could be right over here, and so this was a useful way of starting to visualize what might be going on. Remember, this is happening at a very high temperature; they’re all bouncing around, etc. And then, when they react, you might get this. But then this water molecule has no one to react to, so it is—you could view it as a leftover after the reaction.

More Articles

View All
Explore the Stunning Beauty of Laos's Louangphrabang | National Geographic
Set at the confluence of the Mekong and Nam Khan rivers, the port town of Luang Prabang in northern Laos is an exceptional combination of natural splendor and abundant spiritual traditions. [Music] The town was designated a World Heritage Site in 1995 for…
Hexagons are the Bestagons
[Playful instrumental synth music fades slowly] You know… You know… Hexagons are the bestagons. Why? Because bees. Bees are the best and build only the bestagon, the hexagon. Now, I know what you’re thinking. Bees build hexagons because they’re hexapods …
Worked example: Lewis diagram of xenon difluoride (XeF₂) | AP Chemistry | Khan Academy
Let’s do one more example of constructing a Lewis diagram that might be a little bit interesting. So let’s say we want to construct the Lewis structure or Lewis diagram for xenon difluoride. So pause this video and have a go at that. All right, now let’s…
Coral Bleaching in the Great Barrier Reef | Years of Living Dangerously
This year is the warmest on record, and with ocean temperatures reaching dangerously high levels, a major coral bleaching event is predicted to hit the Great Barrier Reef. It’s a race against time to document these reefs before climate change alters condi…
How to Light a Bonfire with Rockets
The following is for informational purposes only; don’t be idiots like we are. Hey, it’s me, Destin. Mechanical Engineer, University of Alabama. Big loser, likes to play with rockets. This is my buddy Stephen, Electrical engineer, not as much of a loser …
Names
Hey, Vsauce. My name is Michael. And my name is Kevin. Names. Humans give each other names, but so do dolphins. They use whistle sounds and will respond to their whistle name even when produced by a dolphin they don’t know. Personal names, personalized t…