yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard normal table for proportion below | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Darnell is a middle school student with a height of 161.405, so it would have a shape that looks something like that. That's my hand-drawn version of it. There's a mean of 150 cm, so right over here, that would be 150 cm.

They tell us that there's a standard deviation of 20 cm, and Darnell has a height of 161.405. Drawing it exactly, but you get the idea, that is 161.405 because they tell us what the standard deviation is. We know the difference between Darnell's height and the mean height, and then once we know how many standard deviations he is above the mean, that's our z-score. We can look at a z-table that tells us what proportion is less than that amount in a normal distribution.

So let's do that. I have my TI-84 emulator right over here, and let's see. Darnell is 161.405. Now the mean is 150 centimeters. 150 is equal to—we could have done that in our head—11.405 cm. Now, how many standard deviations is that above the mean? Well, they tell us that a standard deviation in this case for this distribution is 20 cm.

So we'll take 11.405 divided by 20, so we will just take our previous answer. This just means our previous answer divided by 20 cm, and that gets us 0.57025. So we can say that this is approximately 0.57 standard deviations above the mean.

Now, why is that useful? Well, you could take this z-score right over here and look at a z-table to figure out what proportion is less than 0.57 standard deviations above the mean. So let's get a z-table over here.

What we're going to do is we're going to look up this z-score on this table and the way that you do it is this: The first column, each row tells us our z-score up until the 10th place, and then each of these columns after that tells us which hundreds we're in. So, for 0.57, the 10's place is right over here, so we're going to be in this row, and then our hundred's place is this seven. So we'll look right over here.

So 0.57 tells us the proportion that is lower than 0.57 standard deviations above the mean, and so it is 0.7157. Another way to think about it is, if the heights are truly normally distributed, 71.57% of the students would have a height less than Darnell's.

But the answer to this question, "What proportion of students' heights are lower than Darnell's height?" Well, that would be 0.7157, and they want our answer to four decimal places, which is exactly what we have done.

More Articles

View All
14 minutes of more useless information..
[Music] As I was getting ready to go out the other day, I realized I couldn’t button my pants up all the way. I realized I was gravitationally challenged and that I had been growing in all the wrong directions. So I started doing what any reasonable perso…
Gordon Ramsay Hunts for Native Foods of New Zealand | Gordon Ramsay: Uncharted
Monique: Finally! Good morning! Good to see you! How are you? Interviewer: Good! I’m great! What an amazing place! Welcome to New Zealand. Monique: Fizo is one of New Zealand’s top chefs, trained in Michigan-style restaurants, but passionate about her M…
Student Tips for Completing Assignments on Khan Academy
Hello! In this video, we will discuss how to enhance your learning experience on Khan Academy as you work through assignments and lessons. First, ensure you’re logged in to your Khan Academy account by checking that your name is in the upper right-hand co…
15 Secrets Only Billionaires Know
As of 2023, there are 3,112 billionaires in the world. The billionaire perspective on life is quite different from anything you’ve ever experienced, and it’ll definitely go against many of the things you believe. Here are 15 secrets only billionaires know…
Amputee Skier Shreds Expectations | Short Film Showcase
His talent pretty much exceeds most any skier I’ve ever seen. He got just to be this incredible, incredible skier. It’s impressive. Vu is probably the best athlete I’ve seen and worked with. I do forget that he has, he has got the one leg. My name is Bas…
Corresponding points and sides of scaled shapes
We are told figure two is a scaled copy of figure one. So this is figure two; here this is figure one. Looks like figure two not only has it been scaled down to a smaller version, but it also looks like it has been rotated 180 degrees, or you could say it…