yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard normal table for proportion below | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Darnell is a middle school student with a height of 161.405, so it would have a shape that looks something like that. That's my hand-drawn version of it. There's a mean of 150 cm, so right over here, that would be 150 cm.

They tell us that there's a standard deviation of 20 cm, and Darnell has a height of 161.405. Drawing it exactly, but you get the idea, that is 161.405 because they tell us what the standard deviation is. We know the difference between Darnell's height and the mean height, and then once we know how many standard deviations he is above the mean, that's our z-score. We can look at a z-table that tells us what proportion is less than that amount in a normal distribution.

So let's do that. I have my TI-84 emulator right over here, and let's see. Darnell is 161.405. Now the mean is 150 centimeters. 150 is equal to—we could have done that in our head—11.405 cm. Now, how many standard deviations is that above the mean? Well, they tell us that a standard deviation in this case for this distribution is 20 cm.

So we'll take 11.405 divided by 20, so we will just take our previous answer. This just means our previous answer divided by 20 cm, and that gets us 0.57025. So we can say that this is approximately 0.57 standard deviations above the mean.

Now, why is that useful? Well, you could take this z-score right over here and look at a z-table to figure out what proportion is less than 0.57 standard deviations above the mean. So let's get a z-table over here.

What we're going to do is we're going to look up this z-score on this table and the way that you do it is this: The first column, each row tells us our z-score up until the 10th place, and then each of these columns after that tells us which hundreds we're in. So, for 0.57, the 10's place is right over here, so we're going to be in this row, and then our hundred's place is this seven. So we'll look right over here.

So 0.57 tells us the proportion that is lower than 0.57 standard deviations above the mean, and so it is 0.7157. Another way to think about it is, if the heights are truly normally distributed, 71.57% of the students would have a height less than Darnell's.

But the answer to this question, "What proportion of students' heights are lower than Darnell's height?" Well, that would be 0.7157, and they want our answer to four decimal places, which is exactly what we have done.

More Articles

View All
Perfect and imperfect competition
In this video, we’re going to give an overview of the types of markets that you might encounter in an economics class, and we’re going to get a little bit precise with our language because you’ll hear words like “perfect competition,” “monopoly,” or “olig…
Using the logarithm change of base rule | Mathematics III | High School Math | Khan Academy
So we have two different logarithmic expressions here, one in yellow and one in this pinkish color. What I want you to do, like always, is pause the video and see if you can rewrite each of these logarithmic expressions in a simpler way. I’ll give you a …
Why invest in yourself? | Careers and education | Financial Literacy | Khan Academy
This chart right over here is at bls.gov. BLS stands for the Bureau of Labor Statistics, and in a pretty interesting trend here, it shows that the higher the degree level that someone gets, it is associated with higher median weekly earnings. Right? Becau…
Let's talk about Dave Ramsey and why he doesn't like credit cards!
What’s up you guys, it’s Graham here. So, what are the comments I get a lot of on my channel, especially on my videos about getting a credit card and building your credit history? Comments like, “Dave Ramsey would let me show you drunk yet!” He’d have a …
The productivity hack nobody is talking about
There’s a chance that you’re trying way too hard to change your life. You’re expending all of your willpower on things that don’t require it. Let me give you an example: I’ve been playing hockey for about 20 years. I’m going to be 27 this year and I’ve be…
A warning about Robinhood's 3% Checking Account…
What’s up you guys, it’s Graham here. So I’ll just get right into it. CNBC just recently published an article saying that Robinhood, the stock trading platform, is now going to be offering checking and savings accounts. My initial reaction to this was gre…