yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard normal table for proportion below | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Darnell is a middle school student with a height of 161.405, so it would have a shape that looks something like that. That's my hand-drawn version of it. There's a mean of 150 cm, so right over here, that would be 150 cm.

They tell us that there's a standard deviation of 20 cm, and Darnell has a height of 161.405. Drawing it exactly, but you get the idea, that is 161.405 because they tell us what the standard deviation is. We know the difference between Darnell's height and the mean height, and then once we know how many standard deviations he is above the mean, that's our z-score. We can look at a z-table that tells us what proportion is less than that amount in a normal distribution.

So let's do that. I have my TI-84 emulator right over here, and let's see. Darnell is 161.405. Now the mean is 150 centimeters. 150 is equal to—we could have done that in our head—11.405 cm. Now, how many standard deviations is that above the mean? Well, they tell us that a standard deviation in this case for this distribution is 20 cm.

So we'll take 11.405 divided by 20, so we will just take our previous answer. This just means our previous answer divided by 20 cm, and that gets us 0.57025. So we can say that this is approximately 0.57 standard deviations above the mean.

Now, why is that useful? Well, you could take this z-score right over here and look at a z-table to figure out what proportion is less than 0.57 standard deviations above the mean. So let's get a z-table over here.

What we're going to do is we're going to look up this z-score on this table and the way that you do it is this: The first column, each row tells us our z-score up until the 10th place, and then each of these columns after that tells us which hundreds we're in. So, for 0.57, the 10's place is right over here, so we're going to be in this row, and then our hundred's place is this seven. So we'll look right over here.

So 0.57 tells us the proportion that is lower than 0.57 standard deviations above the mean, and so it is 0.7157. Another way to think about it is, if the heights are truly normally distributed, 71.57% of the students would have a height less than Darnell's.

But the answer to this question, "What proportion of students' heights are lower than Darnell's height?" Well, that would be 0.7157, and they want our answer to four decimal places, which is exactly what we have done.

More Articles

View All
I spent 24 hours with my AI girlfriend
In 2014, Spike Jonze released Her, a film about a man falling in love with his AI companion. The main character, Theodore Twombly, lives a lonely life after separating from his wife. One day, he purchases a software upgrade with a virtual assistant built …
Warren Buffett’s Most Iconic Interview Ever
Secular approach who have also been very successful. Let’s take Warren Buffett of Omaha, Nebraska. If you would put $10,000 in 1965 into his company, Berkshire Hathaway, you would have 1 million today. Warren was a chapter in my 1972 book, Super Money, so…
7 Tips for Effective Remote Learning with Khan Academy
Hello all! Welcome to Seven Tips for Effective Remote Learning with Khan Academy. My name is Megan Patani and I head up U.S. Teacher Education here at Khan Academy. I’m joined today by my colleague Jeremy, who leads our Teacher Success Team. So just a li…
How To Stop Being Soft In Business
Nice guys finish last, especially in the ruthless world of entrepreneurship. Many people have the brains to start a successful business, but some are simply too soft to succeed. And that’s because they don’t follow five simple but effective rules. So why …
Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy
In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor. We also showe…
Khan Academy Ed Talks with Chase Nordengren, PhD
Hello and welcome to Ed Talks with Khan Academy, where we talk to interesting and important people in the education space. I’m Kristen Deservo, the Chief Learning Officer here at Khan Academy, and looking forward to a conversation today with Dr. Chase Nor…