yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard normal table for proportion below | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Darnell is a middle school student with a height of 161.405, so it would have a shape that looks something like that. That's my hand-drawn version of it. There's a mean of 150 cm, so right over here, that would be 150 cm.

They tell us that there's a standard deviation of 20 cm, and Darnell has a height of 161.405. Drawing it exactly, but you get the idea, that is 161.405 because they tell us what the standard deviation is. We know the difference between Darnell's height and the mean height, and then once we know how many standard deviations he is above the mean, that's our z-score. We can look at a z-table that tells us what proportion is less than that amount in a normal distribution.

So let's do that. I have my TI-84 emulator right over here, and let's see. Darnell is 161.405. Now the mean is 150 centimeters. 150 is equal to—we could have done that in our head—11.405 cm. Now, how many standard deviations is that above the mean? Well, they tell us that a standard deviation in this case for this distribution is 20 cm.

So we'll take 11.405 divided by 20, so we will just take our previous answer. This just means our previous answer divided by 20 cm, and that gets us 0.57025. So we can say that this is approximately 0.57 standard deviations above the mean.

Now, why is that useful? Well, you could take this z-score right over here and look at a z-table to figure out what proportion is less than 0.57 standard deviations above the mean. So let's get a z-table over here.

What we're going to do is we're going to look up this z-score on this table and the way that you do it is this: The first column, each row tells us our z-score up until the 10th place, and then each of these columns after that tells us which hundreds we're in. So, for 0.57, the 10's place is right over here, so we're going to be in this row, and then our hundred's place is this seven. So we'll look right over here.

So 0.57 tells us the proportion that is lower than 0.57 standard deviations above the mean, and so it is 0.7157. Another way to think about it is, if the heights are truly normally distributed, 71.57% of the students would have a height less than Darnell's.

But the answer to this question, "What proportion of students' heights are lower than Darnell's height?" Well, that would be 0.7157, and they want our answer to four decimal places, which is exactly what we have done.

More Articles

View All
Cruise Ship Propulsion | Making the Disney Wish | Mini Episode 2
Our Disney Wish has a new propulsion system. This is definitely a used Azipod, which is an electric motor-driven propeller under the water. It really allows for some amazing performance. We’ve made the step from going from a conventional shaft line prope…
_-substitution: defining _ | AP Calculus AB | Khan Academy
What we’re going to do in this video is give ourselves some practice in the first step of u substitution, which is often the most difficult for those who are first learning it. That’s recognizing when u substitution is appropriate and then defining an app…
Expressing a quadratic form with a matrix
Hey guys, there’s one more thing I need to talk about before I can describe the vectorized form for the quadratic approximation of multivariable functions, which is a mouthful to say. So let’s say you have some kind of expression that looks like ( ax^2 ).…
Understanding economic growth | AP Macroeconomics | Khan Academy
In this video, we’re going to talk about economic growth. I want to be very careful here because, depending on the context, people, including economists, might mean different things by economic growth. In everyday language, when people are talking about …
A capacitor integrates current
So now I have my two capacitor equations; the two forms of the equation. One is I in terms of V, and the other is V in terms of I. We’re going to basically look at this equation here and do a little exercise with it to see how it works. I’m going to draw…
15 Steps to Become a Billionaire (From Scratch)
You are watching the Sunday motivational video, “15 Steps to Become a Billionaire from Scratch.” Welcome to a Luxe Calm, the place where future billionaires come to get inspired. Halloway Luxor’s and welcome back! This is a very special Sunday motivationa…