yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard normal table for proportion below | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Darnell is a middle school student with a height of 161.405, so it would have a shape that looks something like that. That's my hand-drawn version of it. There's a mean of 150 cm, so right over here, that would be 150 cm.

They tell us that there's a standard deviation of 20 cm, and Darnell has a height of 161.405. Drawing it exactly, but you get the idea, that is 161.405 because they tell us what the standard deviation is. We know the difference between Darnell's height and the mean height, and then once we know how many standard deviations he is above the mean, that's our z-score. We can look at a z-table that tells us what proportion is less than that amount in a normal distribution.

So let's do that. I have my TI-84 emulator right over here, and let's see. Darnell is 161.405. Now the mean is 150 centimeters. 150 is equal to—we could have done that in our head—11.405 cm. Now, how many standard deviations is that above the mean? Well, they tell us that a standard deviation in this case for this distribution is 20 cm.

So we'll take 11.405 divided by 20, so we will just take our previous answer. This just means our previous answer divided by 20 cm, and that gets us 0.57025. So we can say that this is approximately 0.57 standard deviations above the mean.

Now, why is that useful? Well, you could take this z-score right over here and look at a z-table to figure out what proportion is less than 0.57 standard deviations above the mean. So let's get a z-table over here.

What we're going to do is we're going to look up this z-score on this table and the way that you do it is this: The first column, each row tells us our z-score up until the 10th place, and then each of these columns after that tells us which hundreds we're in. So, for 0.57, the 10's place is right over here, so we're going to be in this row, and then our hundred's place is this seven. So we'll look right over here.

So 0.57 tells us the proportion that is lower than 0.57 standard deviations above the mean, and so it is 0.7157. Another way to think about it is, if the heights are truly normally distributed, 71.57% of the students would have a height less than Darnell's.

But the answer to this question, "What proportion of students' heights are lower than Darnell's height?" Well, that would be 0.7157, and they want our answer to four decimal places, which is exactly what we have done.

More Articles

View All
Homeroom with Sal & Eduardo Cetlin - Wednesday, September 2
Hi everyone! Welcome to our homeroom live stream. Really excited about the conversation we’re going to have in a few minutes with Eduardo Setlin from the Amgen Foundation. I encourage any of y’all who have questions to start putting them in the message bo…
Your Top Questions Answered: Part 1
What should you do if you want to be very successful and have a very, very big impact on the world? Make your work and your passion the same thing. Don’t forget about the money part, but do it in a way that you’re going to, uh, produce enough money that y…
Warren Buffett, Chairman, Berkshire Hathaway Investment Group | Terry Leadership Speaker Series
Good morning. It certainly got quiet quickly. That surprised me. Can you hear me? Are you there? Back well for business school, you know, it doesn’t get much better than this. Having the world’s greatest investor come to our campus is quite a bore. Office…
Colonial Weaponry | Saints & Strangers
[Music] Radio weapons, push off, push off design. Mr. Bradford, fire! This is your standard, uh, standard matchlock musket. It was the earliest firing, uh, musket that there was. This over here is a match cord; both sides were normally kept lit in case …
How to build a relationship with your buyers.
Right now, you have the two ADXs, two ox, one’s matte and one’s shiny inside. How much you think you’re flying each of them? 350 each? That’s a pretty good usage on those airplanes as they’re mostly flying around. I have a brother who lives in it, goes t…
Simplifying resistor networks | Circuit analysis | Electrical engineering | Khan Academy
We’ve learned about series and parallel resistors. We’ve learned how to simplify series and parallel resistors into an equivalent resistor. Just to review, for the series resistor, our series equivalent ( R_{series} ) is equal to the sum of resistors in …