yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard normal table for proportion below | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Darnell is a middle school student with a height of 161.405, so it would have a shape that looks something like that. That's my hand-drawn version of it. There's a mean of 150 cm, so right over here, that would be 150 cm.

They tell us that there's a standard deviation of 20 cm, and Darnell has a height of 161.405. Drawing it exactly, but you get the idea, that is 161.405 because they tell us what the standard deviation is. We know the difference between Darnell's height and the mean height, and then once we know how many standard deviations he is above the mean, that's our z-score. We can look at a z-table that tells us what proportion is less than that amount in a normal distribution.

So let's do that. I have my TI-84 emulator right over here, and let's see. Darnell is 161.405. Now the mean is 150 centimeters. 150 is equal to—we could have done that in our head—11.405 cm. Now, how many standard deviations is that above the mean? Well, they tell us that a standard deviation in this case for this distribution is 20 cm.

So we'll take 11.405 divided by 20, so we will just take our previous answer. This just means our previous answer divided by 20 cm, and that gets us 0.57025. So we can say that this is approximately 0.57 standard deviations above the mean.

Now, why is that useful? Well, you could take this z-score right over here and look at a z-table to figure out what proportion is less than 0.57 standard deviations above the mean. So let's get a z-table over here.

What we're going to do is we're going to look up this z-score on this table and the way that you do it is this: The first column, each row tells us our z-score up until the 10th place, and then each of these columns after that tells us which hundreds we're in. So, for 0.57, the 10's place is right over here, so we're going to be in this row, and then our hundred's place is this seven. So we'll look right over here.

So 0.57 tells us the proportion that is lower than 0.57 standard deviations above the mean, and so it is 0.7157. Another way to think about it is, if the heights are truly normally distributed, 71.57% of the students would have a height less than Darnell's.

But the answer to this question, "What proportion of students' heights are lower than Darnell's height?" Well, that would be 0.7157, and they want our answer to four decimal places, which is exactly what we have done.

More Articles

View All
15 Practical Ways To Be More Creative
Most people are unaware of this simple fact: creativity is the most in-demand soft skill in the world. According to LinkedIn, you don’t have to be a genius to realize this, but it’s an easy thing to overlook. We have entered the age of automation, so now …
How have congressional elections changed over time? | US government and civics | Khan Academy
How have congressional elections changed over time? Congressional elections used to be separate from the presidential elections. One of the great examples is in 1938. FDR, who we all look back and think of as a president who had such extraordinary power a…
how I got rid of my ACNE after 8 years - ONLY thing worked
If drinking more water, exercising more, sleeping more, reducing stress, or generally the tips that people give you on YouTube didn’t work for you then this video is for you. Hi, guys, it’s me Ruri. Today, I’m back with another very requested video. Just …
Cartagena Awakening | No Man Left Behind
[Music] It was a loud bang, bang, bang, bang, bang. You know, it wasn’t just an average knock. And, uh, I distinctly remember that that sounded very aggressive and very demanding. We were both asleep when I heard somebody pounding on Charlie’s door, and I…
✈️ The Maddening Mess of Airport Codes! ✈️
There are thousands of airports connecting cities across countries and continents. Yet, with just three letters from AAC and BBI to YYZ and ZZU, both me and you and our bags root round the world as unambiguously as practically possible: airport codes. If…
I BOUGHT MY DREAM CAR!
Well guys, I finally did it! After years and years and years of literally, I’d, I’ve never owned my own car. After years of just riding a motorcycle and just bashing that around to get from A to B, and riding in the rain and all those horrible things, I …