yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard normal table for proportion below | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Darnell is a middle school student with a height of 161.405, so it would have a shape that looks something like that. That's my hand-drawn version of it. There's a mean of 150 cm, so right over here, that would be 150 cm.

They tell us that there's a standard deviation of 20 cm, and Darnell has a height of 161.405. Drawing it exactly, but you get the idea, that is 161.405 because they tell us what the standard deviation is. We know the difference between Darnell's height and the mean height, and then once we know how many standard deviations he is above the mean, that's our z-score. We can look at a z-table that tells us what proportion is less than that amount in a normal distribution.

So let's do that. I have my TI-84 emulator right over here, and let's see. Darnell is 161.405. Now the mean is 150 centimeters. 150 is equal to—we could have done that in our head—11.405 cm. Now, how many standard deviations is that above the mean? Well, they tell us that a standard deviation in this case for this distribution is 20 cm.

So we'll take 11.405 divided by 20, so we will just take our previous answer. This just means our previous answer divided by 20 cm, and that gets us 0.57025. So we can say that this is approximately 0.57 standard deviations above the mean.

Now, why is that useful? Well, you could take this z-score right over here and look at a z-table to figure out what proportion is less than 0.57 standard deviations above the mean. So let's get a z-table over here.

What we're going to do is we're going to look up this z-score on this table and the way that you do it is this: The first column, each row tells us our z-score up until the 10th place, and then each of these columns after that tells us which hundreds we're in. So, for 0.57, the 10's place is right over here, so we're going to be in this row, and then our hundred's place is this seven. So we'll look right over here.

So 0.57 tells us the proportion that is lower than 0.57 standard deviations above the mean, and so it is 0.7157. Another way to think about it is, if the heights are truly normally distributed, 71.57% of the students would have a height less than Darnell's.

But the answer to this question, "What proportion of students' heights are lower than Darnell's height?" Well, that would be 0.7157, and they want our answer to four decimal places, which is exactly what we have done.

More Articles

View All
Inverse relationship between capital price and returns | Macroeconomics | Khan Academy
So much of Piketty’s book is about this idea of more, more, and more returns to capital. That the return to capital is going to grow faster than the growth of the economy. We see charts like this, where we have the value of private capital as a percentage…
Ionic solids | Intermolecular forces and properties | AP Chemistry | Khan Academy
Let’s talk a little bit about ionic solids, which you can imagine are solids formed by ions. So let’s think a little bit about these ions. For example, we could look at group one elements here, especially things like lithium, sodium, or potassium. In many…
How to get over your FEAR…this is what I was afraid of
What’s up, you guys? It’s Graham here. So today, I’m going to be making a video about fear and why it took me 3 years just to get up the courage to upload a video onto YouTube. Because when I hear myself saying that, I realize it sounds [ __ ] ridiculous.…
How To Manage Your Money Like The 1%
What’s the guys? It’s Graham here. So CNBC just posted an article saying that 60% of Americans would go into debt if a thousand-dollar emergency came up. I read that and I thought to myself, this is absolutely unacceptable, and this has to change. Hearin…
Analog vs. digital signals | Waves | Middle school physics | Khan Academy
In this video, we’re going to think about analog versus digital signals. One way to think about the difference is an analog signal is trying to reproduce exactly, in some type of a signal, what is going on, while a digital signal is converting it usually …
How To Price For B2B | Startup School
[Music] Hi there, my name is Tom, and I’m a partner here at Y Combinator. Today, I’m going to be talking about one of the most common questions I get from founders, which is how to price. So, the founder’s been working on outbound sales, contacting peop…