yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard normal table for proportion below | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Darnell is a middle school student with a height of 161.405, so it would have a shape that looks something like that. That's my hand-drawn version of it. There's a mean of 150 cm, so right over here, that would be 150 cm.

They tell us that there's a standard deviation of 20 cm, and Darnell has a height of 161.405. Drawing it exactly, but you get the idea, that is 161.405 because they tell us what the standard deviation is. We know the difference between Darnell's height and the mean height, and then once we know how many standard deviations he is above the mean, that's our z-score. We can look at a z-table that tells us what proportion is less than that amount in a normal distribution.

So let's do that. I have my TI-84 emulator right over here, and let's see. Darnell is 161.405. Now the mean is 150 centimeters. 150 is equal to—we could have done that in our head—11.405 cm. Now, how many standard deviations is that above the mean? Well, they tell us that a standard deviation in this case for this distribution is 20 cm.

So we'll take 11.405 divided by 20, so we will just take our previous answer. This just means our previous answer divided by 20 cm, and that gets us 0.57025. So we can say that this is approximately 0.57 standard deviations above the mean.

Now, why is that useful? Well, you could take this z-score right over here and look at a z-table to figure out what proportion is less than 0.57 standard deviations above the mean. So let's get a z-table over here.

What we're going to do is we're going to look up this z-score on this table and the way that you do it is this: The first column, each row tells us our z-score up until the 10th place, and then each of these columns after that tells us which hundreds we're in. So, for 0.57, the 10's place is right over here, so we're going to be in this row, and then our hundred's place is this seven. So we'll look right over here.

So 0.57 tells us the proportion that is lower than 0.57 standard deviations above the mean, and so it is 0.7157. Another way to think about it is, if the heights are truly normally distributed, 71.57% of the students would have a height less than Darnell's.

But the answer to this question, "What proportion of students' heights are lower than Darnell's height?" Well, that would be 0.7157, and they want our answer to four decimal places, which is exactly what we have done.

More Articles

View All
Bitcoin Just Got Cancelled
What’s up, Graham? It’s Guys here. So, this is not the video I was planning to make today, but here we are. Tesla and Elon Musk just completely pulled the rug from underneath Bitcoin, and with one single tweet, $365 billion was lost from the entire crypto…
"The ULTIMATE INVESTING ADVICE Everyone NEEDS TO HEAR!" | Kevin O'Leary
She invested in herself in something she really loved that appreciated in value. Innovation is disruption, and so whenever you have a Tesla or somebody that’s trying to change the world, you’re going to piss somebody off. I don’t want to work out today. …
BEST of MARGIN CALL #3 - First Meeting
So, Sam, what do you have for us? It’ll be here in a minute. Finding somebody in the copy room at this hour was a little bit of a challenge. Okay, let’s go right into the introductions. This is Sarah Robertson, who you know. Chief Risk Management Office…
Worked example: Using the reaction quotient to predict a pressure change | Khan Academy
A one liter reaction vessel contains 1.2 moles of carbon monoxide, 1.5 moles of hydrogen gas, and 2.0 moles of methanol gas. How will the total pressure change as the system approaches equilibrium at constant temperature? So, our carbon monoxide is react…
Cutting shapes into equal parts | Math | 3rd grade | Khan Academy
Is each piece equal to one-fourth of the area of the pie? So we have a pie, and it has one, two, three, four pieces. So it does have four pieces. So is one of those pieces equal to one-fourth of the pie? Well, let’s talk about what we mean when we have a…
Geoff Ralston And Adora Cheung - Introduction To Startup School
Good morning to you guys who are here live, but good day to everyone who is viewing this class online. Welcome to Y Combinator’s second annual massively open online course, Startup School. So, I’m Jeff Ralston, I’m a partner here at Y Combinator and one o…