yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Connecting f, f', and f'' graphically (another example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We have the graph of three functions here, and we're told that one of them is the function ( f ), one is its first derivative, and then one of them is the second derivative. We just don't know which one is which. So, like always, pause this video and see if you can figure it out.

All right, now the way I'm going to tackle it is I'm going to look at each of these graphs and try to think what would their derivatives look like. So for this first one, we can see our derivative right over here. Our slope of our tangent line would be a little bit negative, and then it gets more and more and more negative. As we approach this vertical asymptote right over here, it looks like it's approaching negative infinity. So the derivative would actually—over here it would be a little bit less than zero—but then it would get more and more and more negative, and then it would approach negative infinity.

So, it would have a similar shape, general shape, to the graph itself, at least to the left of this vertical asymptote. Now, what about to the right of the vertical asymptote? Right to the right of the vertical asymptote, it looks like the slope of the tangent line is very negative. It's very negative, but then it becomes less and less and less negative, and it looks like it is approaching zero. So on this side, the derivative starts out super negative, and then it looks like the derivative is going to asymptote towards zero, something like that.

Based on what we just sketched, it looks like this right graph is a good candidate for the derivative of this left graph. You might say what's wrong with this blue graph? Well, this blue graph out here, notice it's positive. So if this were the derivative of the left graph, that means that the left graph would need a positive slope out here, but it doesn't have a positive slope. It's a very—it's a slightly negative slope becoming super negative. And so right here, we're slightly negative, and then we become very negative.

So maybe this is—let's call this ( f ), and maybe this is ( f' ). This is ( f' ) right over here. Now let's look at this middle graph. What would its derivative do? So over here, our slope is slightly negative, and then it becomes more and more and more and more negative. So the derivative of this might look like—it has to be slightly negative, but then it gets more and more and more and more negative as we approach that vertical asymptote.

On the right side of the vertical asymptote, our derivative is very positive here, and then it gets less and less and less and less positive. So we start—our derivative would be very positive, and then it would get less and less and less and less positive. It looks like it might—the slope here might be asymptoting towards zero, so our graph might look something like that.

Well, the left graph right here looks a lot like what I just sketched out as a candidate derivative for this blue graph, for this middle graph. So I would say that this is ( f ), then this is the derivative of that, which would make it ( f' ), and then we already established that this right graph is the derivative of the left one. So if it's the derivative of ( f' ), it's not ( f' ) itself; it's the second derivative.

So I feel pretty good about that. Just for good measure, we could think about what the derivative of this graph would look like. Here, the slope is slightly negative, but then it gets more and more and more and more and more negative. So the derivative would have a similar shape here. Then here, our derivative would be very positive, and it gets less and less and less and less positive. So we start very positive, and then it gets less and less and less and less positive.

As a general shape, it actually does look a lot like this first graph. But the reason why I'm not going to say that this first graph is the derivative of the right-hand graph is because this right-hand graph was the only good candidate that we had for the derivative of the left-hand graph. So I feel pretty good with what we selected, that this middle one is ( f ), the left one is the first derivative, and the right one is the second derivative.

More Articles

View All
Regrouping whole number place values | Math | 4th grade | Khan Academy
Five thousands equals how many hundreds? There’s probably a few ways we could take this on, but maybe let’s start by thinking about these five thousands. Five thousands is one thousand five times, so let’s think about each of those thousands. Each of thos…
Tradition in the Old West: How Past and Present Co-Exist in Fort Worth | National Geographic
I’m just intensely curious about people and social behavior. Everything that I’m doing is just my way of satisfying that curiosity. My work as a photographer is deeply rooted in culture. I’m really excited to travel to Fort Worth to explore all the old We…
Know your product.
I start off my day by arriving early at the office and closing a deal on a private jet sale in Asia. You know we always tell people, “We want you to hate us today, not the six on.” From so we’re giving you all the bad news now, and if you can live with al…
The Lure of Horror
Why do we love being scared? Is it the way our hearts pound in our chests? The mixture of curiosity and revulsion when we see a monster or a ghost? Or is it something even darker, like the disturbing themes portrayed in popular culture? I’ll be drawn to g…
Drowning in Grain: A Look at the Hidden Dangers of Farming | Short Film Showcase
So we’ve got a situation here with a farmer or child who’s trapped in a grain bin. We’ve got plastic coffers here, and we’ll be placing these on each side of the victim. These are actually going to protect the victim from the corn, to get the corn from co…
Ancient Greeks and Persians | World History | Khan Academy
So where we left off in the last video, we have the Neo-Babylonians, the Chaldean Empire, being conquered by the Persians led by Cyrus the Great. That’s in 539 BCE that Cyrus the Great conquers Babylon, and they’re able to establish a significant Empire. …