yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing relationships between variables using tables and equations | 6th grade | Khan Academy


2m read
·Nov 10, 2024

We're told Rava is researching an electric car. She finds this graph which shows how much range, measured in kilometers, the car gains based on charging time. All right, and they say first fill in the missing values in the table below. If you are so inspired, pause this video and see if you can have a go at that as well.

All right, well, they give us a few points, and I'm assuming these are points on a line. We can see when the charging time is 15 minutes, the range is 180. So we can see when the charging time is 15 minutes, the range is 180. We can see when the charging time is 30 minutes, the range is 360 km. So I could write that there.

Then we see when the charging time is 45 minutes, the range is 540 km. So that's all nice, but then they give us a few other points here. They say what happens when we are at T = 10 or T = 1, which aren't easy to pick out here. But this is where it might be useful if we assume that this is a line. What is the relationship between these?

So let's see. To go from 15 to 180, it looks like you're multiplying by 12. To go from 30 to 360, it looks like we're multiplying by 12. To go from 45 to 540, it looks like we are multiplying by 12. So assuming K is just going to be 12 * T, we know that when T equals 1, K is 12, and when T equals 10, 10 * 12 is 120.

All right, now the second part they say write an equation Rava can use to find out how much charging time T it takes to gain any number of kilometers in range K. All right, well, we already established a relationship. We said that K is equal to 12 times whatever T is; that's what we just established in this table up here.

But that's not what they want. They want to find out how much charging time T it takes to gain any number of kilometers in range K. So what we need to do here is solve for T. So let's divide both sides by 12 to just have T by itself on the right-hand side, and we are going to be left with T is equal to K over 12.

T is equal to K over 12, and notice you could put any number of kilometers of range in here, and you're essentially just going to divide it by 12, and that will give you how much charging time. I guess this would assume an infinitely large battery, which we know doesn't exist, but for the sake of this problem here, we have it. Here is the equation Rava can use.

More Articles

View All
See How Termites Inspired a Building That Can Cool Itself | Decoder
In 1991, architect Mick Pearce had a problem. An investment group in Harare, Zimbabwe, hired him to design the largest office and retail building in the country. But they didn’t want to pay for the expensive air conditioning needed to cool such a large bu…
Warren Buffett: How to Invest During High Inflation
Stocks sell at silly prices from time to time. It doesn’t take a high IQ to figure out that they’re cheap, but it does take a temperament that’s willing to step up and actually act. That, there, as I’m sure you are all aware, is Mr. Warren Buffett, the 92…
How to Find What Success Looks Like For You
It’s not just like, “Oh, follow your passion.” It’s a little bit more of a complex formula. Like, what are you interested in? What are you passionate about? Also, like your nature. Also, uh, how can you make money? That type of thing. Yes, looked at subli…
What China's Ban of Crypto Means For Investors | Meet Kevin
I want to get started right away. So, uh, I want to start with cryptocurrencies. Obviously, Bitcoin has been running. We’ve crossed that 60,000 psychological threshold. NFTs are all the rage right now. Crypto Punks, we’ve got many other NFTs as well. Uh,…
How the End of the Cold War Led to Birth of the International Space Station | Rewind the '90s
NARRATOR: Our story opens with revolution. After decades of cold war, the mighty Soviet empire is collapsing. MAN: The wall is effectively down. NARRATOR: Just weeks before the 90s begin, the most famous symbol of the political divide between east and w…
LC natural response derivation 2
In the last video, we set up this differential equation that described an LC circuit, and now we’re going to go about solving this second-order circuit. The technique that works here is the same that worked with first-order ordinary differential equations…