yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing relationships between variables using tables and equations | 6th grade | Khan Academy


2m read
·Nov 10, 2024

We're told Rava is researching an electric car. She finds this graph which shows how much range, measured in kilometers, the car gains based on charging time. All right, and they say first fill in the missing values in the table below. If you are so inspired, pause this video and see if you can have a go at that as well.

All right, well, they give us a few points, and I'm assuming these are points on a line. We can see when the charging time is 15 minutes, the range is 180. So we can see when the charging time is 15 minutes, the range is 180. We can see when the charging time is 30 minutes, the range is 360 km. So I could write that there.

Then we see when the charging time is 45 minutes, the range is 540 km. So that's all nice, but then they give us a few other points here. They say what happens when we are at T = 10 or T = 1, which aren't easy to pick out here. But this is where it might be useful if we assume that this is a line. What is the relationship between these?

So let's see. To go from 15 to 180, it looks like you're multiplying by 12. To go from 30 to 360, it looks like we're multiplying by 12. To go from 45 to 540, it looks like we are multiplying by 12. So assuming K is just going to be 12 * T, we know that when T equals 1, K is 12, and when T equals 10, 10 * 12 is 120.

All right, now the second part they say write an equation Rava can use to find out how much charging time T it takes to gain any number of kilometers in range K. All right, well, we already established a relationship. We said that K is equal to 12 times whatever T is; that's what we just established in this table up here.

But that's not what they want. They want to find out how much charging time T it takes to gain any number of kilometers in range K. So what we need to do here is solve for T. So let's divide both sides by 12 to just have T by itself on the right-hand side, and we are going to be left with T is equal to K over 12.

T is equal to K over 12, and notice you could put any number of kilometers of range in here, and you're essentially just going to divide it by 12, and that will give you how much charging time. I guess this would assume an infinitely large battery, which we know doesn't exist, but for the sake of this problem here, we have it. Here is the equation Rava can use.

More Articles

View All
Vector word problem: resultant velocity | Vectors | Precalculus | Khan Academy
We’re told a boat is traveling at a speed of 26 kilometers per hour in a direction that is a 300 degree rotation from east. At a certain point, it encounters a current at a speed of 15 kilometers per hour in a direction that is a 25 degree rotation from e…
Why I’m Never Going To Afford A Home
What’s up you guys! It’s Graham here. So put yourself in this position: you’ve graduated from college, you have $332,000 in student loan debt, and you are eventually able to land a job at $65,000. But over the next few years, the reality sets in: you’ll …
My Problem Spending Money
What’s up, you graham? It’s guys here, and today we’re going to be talking about why I save so much money. Because over the last few years, I’ve been called quite a few things, ranging anywhere from stingy, cheap, thrifty, frugal, economical, a penny pinc…
Analyzing structure with linear inequalities: fruits | High School Math | Khan Academy
Shantanu bought more apples than bananas, and he bought more bananas than cantaloupes. Let A represent the number of apples Shantanu bought, let B represent the number of bananas, and let C represent the number of cantaloupes. Let’s compare the expressio…
Stock are not backed by the company. Simple Logic
Busted open, our stock went down to six. It went from 113 to six in less than a year. That whole period is very interesting because the stock is not the company, and the company is not the stock. Stocks are not backed by the company; that is why investors…
Analyzing problems involving definite integrals | AP Calculus AB | Khan Academy
The population of a town grows at a rate of ( r(t) = 300 e^{0.3t} ) people per year, where ( t ) is time in years. At time ( t = 2 ), the town’s population is 1200 people. What is the town’s population at ( t = 7 )? Which expression can we use to solve t…