yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Golden Ratio: Nature's Favorite Number


3m read
·Nov 4, 2024

Processing might take a few minutes. Refresh later.

Humanity has always been in search of patterns. They make us feel comfortable. They give us meaning. Whether they be in the deepest, most conceptually difficult topics like string theory and quantum mechanics, or even in simple things like the behaviour of the person we are talking to, we love to seek patterns, and do so sometimes against our better judgement.

Nature and mathematics are no exceptions to that list when it comes to pattern-seeking. In fact, it is at the forefront of it. We have evolved to notice patterns and be alerted when something isn’t right. One of these so-called patterns that has fascinated mathematicians and individuals alike for centuries is the golden ratio. Also known by the Greek letter Phi, it can be defined by taking a line and breaking it into two separate pieces. If the ratio between these two new portions is the same as the ratio between the original line and the now larger piece, the portions are said to satisfy the golden ratio.

The value that satisfies this equation is roughly 1.618… It’s an irrational number, meaning we don’t know how to represent it using the ratio of 2 whole numbers. In fact, we can’t even write the number fully; it’s unending. It’s effectively the same as pi in that regard, and so we instead use the dots to represent the non-terminating nature of this number. But what makes this ratio so golden? Well, I should point out, the ‘golden’ part of the name is rather modern. The more original name that was given to this ratio was ‘the divine proportion.’

And right away, you can see that the term implies some sort of divinity - an extraordinary property that people must have noticed when they were dealing with this number. To further explain this fascination, we should begin by dividing the fascination into two parts - mathematics and aesthetics. The golden ratio and the Fibonacci sequence appear in nature every day, and arguably the strongest evidence of “goldenness” in the golden ratio is in the floral arrangement of seeds.

Take this for example: if you were a sunflower, how much of a turn would you make before you make a new seed? If you don’t turn at all, well you just continue making a straight line of seeds, kinda boring. If you make half a turn, or a 180 degree turn each time, well now you have a line of seeds, but in opposite directions. 120 degrees gives you 3 lines, 144 degrees gives you 5 lines. There should exist some angle, some number of turns that, if properly executed, produces a pattern of seeds that is closely packed together with no gaps between them. Something like this, this seems more natural to nature, right?

The number of “turns” needed to produce a spiral design like this is… well, the golden ratio. One seed placed every 1.618 turns, or every 137.5 degrees. This is known as the golden angle, and it is seen all throughout nature. The idea is to arrange seeds in a way that can maximize the sunlight and rain that they receive, so that the genetic material can successfully be passed on to the next generation. If you don’t do this efficiently, evolution won’t be very kind to you.

If you pack in the seeds too tightly, all the seeds won’t get the nutrients they need. If you pack them too sparsely, you’re just wasting space. This happens with not only sunflower seeds, but in plant leaves, tree branches, and more. In fact, it goes even deeper. If you were to count the number of spiral arms in both directions, left and right, you’ll find that they aren’t equal; however, they will both always be Fibonacci numbers.

The higher and higher the numbers go, the closer and closer the ratio between them approaches Phi. The beautiful spirals that result are purely a creation of nature. These spirals are consistent across different flower types, and even the numbers of petals seem to be related to the golden ratio. The sunflower example is particularly interesting because it actually ties the aesthetic element of the golden ratio to the mathematics behind it; there is a reason why they go...

More Articles

View All
🎉100th show! 🎉 Homeroom with Sal & Tabatha Rosproy - Thursday, September 24
Hi everyone! Welcome to the Homeroom live stream. Sal here from Khan Academy. We have a very exciting guest today! We have Tabitha Ross, Pro 2020 National Teacher of the Year. So, if you have questions for what it’s like to be a teacher, especially a teac…
Do People Understand The Scale Of The Universe?
[Derek] Do people really understand the scale of the universe? Damn, really? That’s… okay. This task is going to seem ridiculously easy. Rank these things from smallest at the top to biggest on the bottom. But sometimes you have to ask the question no o…
Making Liquid Nitrogen From Scratch!
Nitrogen is everywhere. It’s a fundamental building block of life. It makes up 78% of the atmosphere, and it’s in these tiny micro bubbles, in my Starbucks ‘Nitro-Cold Brew.’ And yes, this episode is sponsored by Starbucks. They challenged me to liquify n…
Graphing exponential growth & decay | Mathematics I | High School Math | Khan Academy
This is from the graph basic exponential functions on KH Academy, and they ask us to graph the following exponential function. They give us the function ( H(x) = 27 \cdot \left(\frac{1}{3}\right)^x ). So our initial value is 27, and ( \frac{1}{3} ) is our…
The fastest way to transform your entire life
So my last video was extremely depressing. I made a tutorial on how to ruin the rest of your life, and most of you thought it was an absolute banger, including myself. I thought it was really cool. I put a lot of effort into it, and I put a lot of effort …
living alone ☕️ | a productive day in Rome 🇮🇹 exploring the city, eating yummy food 🍝
[Music] Further [Music] Um [Music] Okay, so good morning everyone! Today we’re gonna spend a productive day together because I have a lot of things to do. So, I’m currently living alone in Rome, but my mom is visiting me. I have a video that I need to edi…