yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Extended: Beaker Ball Balance Problem


2m read
·Nov 10, 2024

This is the final installment of the beaker ball balance problem. So if you haven’t seen the first part, you should probably watch that now. The link is in the description.

Now assuming you have seen it, you know that the balance tips towards the hanging acrylic ball when weighed against a beaker with a submerged ping pong ball. But what would happen if, instead of tethering the ping pong ball to the base of the beaker, it was instead submerged by my finger? I posed this question in the last video, and you responded with thousands of comments.

Thirteen percent of you thought that the acrylic ball beaker would be heavier. Twenty-nine percent thought the ping pong ball beaker would be heavier. And 54 percent of you thought that they would be balanced. So now let’s see what actually happens in three, two, one. Perfectly balanced.

But why is this the case? Well, just as in the previous experiment, both balls displaced the same amount of water and so they experienced the same upward buoyant force equal to the weight of water they displace. Therefore, there are equal and opposite downward forces on the water, making both beakers heavier by this amount.

And our answer could stop here. But if you are wondering why this result is different from the previous case, consider that in the first part, the downward force on the ping pong ball side was counteracted by the upward tension in the string. But not anymore, because there is no string.

Instead, the downward force from my hand is equal to the buoyant force minus the weight of the ping pong ball. So that overall both beakers get heavier by the same amount. It is just the weight of water displaced by the ping pong ball or the acrylic ball because it has the same volume.

I hope you enjoyed this experiment. If you have got another way of explaining this, please let me know in the comments.

More Articles

View All
Mechanical waves and light | Waves | Middle school physics | Khan Academy
Let’s talk about waves. So, let’s imagine that you were to take a string and attach it at one end to a wall, and then on the other end, you were to wiggle it up and down. Well, then you would have made a wave. You would see a pattern that looks like this.…
Charlie Munger: Why your first $100,000 will CHANGE YOUR LIFE
Getting your first 100,000 saved and invested will change your life. The quicker you can hit that milestone, the better. But this advice isn’t coming from me; it’s coming from legendary investor and billionaire Charlie Munger. Hearing what Munger had to s…
Angular velocity graphs due to multiple torques
A disc is initially rotating clockwise around a fixed axis with angular speed omega naught. At time t equals 0, the two forces, F₁ is equal to 20 newtons and F₂ is equal to 10 newtons, are exerted on the disk as shown in the figure below. So these are the…
Multiplying complex numbers in polar form | Precalculus | Khan Academy
We’re given two different complex numbers here and we want to figure out what is the product. Pause this video and see if you can figure that out. All right, now let’s work on this together. So we know from the form that it’s written here that the modulu…
What EVERYONE Needs To Do With Their Money ASAP
What’s up you guys, it’s Graham here. So I want to begin this video on a very serious note. As many businesses and cities begin to shut down, cease operations, close schools, cut hours, and inevitably begin laying off workers, it’s really more important …
Pen Pal Experiment: Two Women Swap the Data of Their Daily Lives | Short Film Showcase
[Music] I’m Georgia. I am Italian, but I live in New York. I’m Stephanie. I was born in Denver, Colorado, but I’ve lived in London for the past 13 years. We met each other in person twice. When in September 2014, we decided to collaborate on a year-lon…