yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Extended: Beaker Ball Balance Problem


2m read
·Nov 10, 2024

This is the final installment of the beaker ball balance problem. So if you haven’t seen the first part, you should probably watch that now. The link is in the description.

Now assuming you have seen it, you know that the balance tips towards the hanging acrylic ball when weighed against a beaker with a submerged ping pong ball. But what would happen if, instead of tethering the ping pong ball to the base of the beaker, it was instead submerged by my finger? I posed this question in the last video, and you responded with thousands of comments.

Thirteen percent of you thought that the acrylic ball beaker would be heavier. Twenty-nine percent thought the ping pong ball beaker would be heavier. And 54 percent of you thought that they would be balanced. So now let’s see what actually happens in three, two, one. Perfectly balanced.

But why is this the case? Well, just as in the previous experiment, both balls displaced the same amount of water and so they experienced the same upward buoyant force equal to the weight of water they displace. Therefore, there are equal and opposite downward forces on the water, making both beakers heavier by this amount.

And our answer could stop here. But if you are wondering why this result is different from the previous case, consider that in the first part, the downward force on the ping pong ball side was counteracted by the upward tension in the string. But not anymore, because there is no string.

Instead, the downward force from my hand is equal to the buoyant force minus the weight of the ping pong ball. So that overall both beakers get heavier by the same amount. It is just the weight of water displaced by the ping pong ball or the acrylic ball because it has the same volume.

I hope you enjoyed this experiment. If you have got another way of explaining this, please let me know in the comments.

More Articles

View All
Compressing functions | Mathematics III | High School Math | Khan Academy
[Voiceover] G of x is a transformation of f of x. The graph here shows this is y is equal to f of x, the solid blue line. This is y is equal to g of x as a dashed red line. And they ask us, “What is g of x in terms of f of x?” And like always, pause the v…
15 Signs You Are AVERAGE
Some of you were told you were special growing up, but somehow reality didn’t catch up with that promise, did it? Somehow something happened where all the expectations you had from life went out the door, and by the end of this video you’ll have a clear …
Homeroom with Sal & Superintendent Austin Beutner - Wednesday, September 30
Hi everyone! Sal Khan here from Khan Academy. Welcome to our homeroom live stream. I’m very excited about today’s guest, Superintendent Austin Buettner from Los Angeles Unified School District. So already, start thinking about some questions you might ha…
Summiting the World’s Most Dangerous Mountain | Podcast | Overheard at National Geographic
We’re high on a snowy mountain in Pakistan where a group of Nepalese climbers are struggling through harsh winds. It’s two o’clock in the evening. Think this is one of the hottest climbs we have ever met. [Music] That’s Ming Maggioja Sherpa. He goes by …
Warren Buffett: How to Calculate the Instrinsic Value of a Stock
Okay, here we go. In this video, I’m going to take the time to explain exactly how Warren Buffett calculates the intrinsic value of a stock. We’ll hear him explain it, and then we’ll run through a full example in the second half of the video so you can fo…
Global wind patterns| Earth systems and resources| AP environmental science| Khan Academy
Today we’re going to talk about global wind patterns. Wind determines more than just the best places to fly a kite. Global wind patterns help control where it rains, what kinds of species can survive in an area, and even where tropical rainforests and des…