yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Extended: Beaker Ball Balance Problem


2m read
·Nov 10, 2024

This is the final installment of the beaker ball balance problem. So if you haven’t seen the first part, you should probably watch that now. The link is in the description.

Now assuming you have seen it, you know that the balance tips towards the hanging acrylic ball when weighed against a beaker with a submerged ping pong ball. But what would happen if, instead of tethering the ping pong ball to the base of the beaker, it was instead submerged by my finger? I posed this question in the last video, and you responded with thousands of comments.

Thirteen percent of you thought that the acrylic ball beaker would be heavier. Twenty-nine percent thought the ping pong ball beaker would be heavier. And 54 percent of you thought that they would be balanced. So now let’s see what actually happens in three, two, one. Perfectly balanced.

But why is this the case? Well, just as in the previous experiment, both balls displaced the same amount of water and so they experienced the same upward buoyant force equal to the weight of water they displace. Therefore, there are equal and opposite downward forces on the water, making both beakers heavier by this amount.

And our answer could stop here. But if you are wondering why this result is different from the previous case, consider that in the first part, the downward force on the ping pong ball side was counteracted by the upward tension in the string. But not anymore, because there is no string.

Instead, the downward force from my hand is equal to the buoyant force minus the weight of the ping pong ball. So that overall both beakers get heavier by the same amount. It is just the weight of water displaced by the ping pong ball or the acrylic ball because it has the same volume.

I hope you enjoyed this experiment. If you have got another way of explaining this, please let me know in the comments.

More Articles

View All
Subtracting two-digit numbers without regrouping (example 2) | 2nd grade | Khan Academy
I would like you to pause the video and think about what 64 minus 31 is. Alright, now let’s think about this together. So what does 64 actually mean? Well, we can use place value to think about that. The six is in the tens place and the four is in the o…
Why you can't stop checking your phone
If I were to ask you why you originally created your social media accounts, you might come up with something similar to, “Well, to keep up with friends and family and see what they’re doing and stuff like that.” And that’s not a bad reason at all; in fact…
Nothing Exists But You | The Philosophy of Solipsism
The ancient Taoist philosopher Zhuangzi once dreamt he was a butterfly. He felt free, flying from flower to flower, doing the things a butterfly does. He didn’t doubt he was a butterfly and had forgotten that he was Zhuangzi. When he woke up, he realized …
What is citizenship? | Citizenship | High school civics | Khan Academy
There are a few definitions of the term citizenship. In this video, we’re going to talk about two of those definitions. One is the legal definition: the status of having citizenship. A person has citizenship as a member of a state, which gives them rights…
The Middle colonies | Period 2: 1607-1754 | AP US History | Khan Academy
Over the course of the 1600s, the English continued to settle along the eastern seaboard of North America. Now, we’ve already talked about the settlements at Virginia and those of Massachusetts, and a little bit about the settlement of New York, which was…
Fraction multiplication as scaling examples
This right over here is an image from an exercise on Khan Academy, and it says compare using greater than, less than, or equal to. On the left, we have one fourth times five thousand, and we want to compare that to five thousand. On Khan Academy, you’d c…