yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Extended: Beaker Ball Balance Problem


2m read
·Nov 10, 2024

This is the final installment of the beaker ball balance problem. So if you haven’t seen the first part, you should probably watch that now. The link is in the description.

Now assuming you have seen it, you know that the balance tips towards the hanging acrylic ball when weighed against a beaker with a submerged ping pong ball. But what would happen if, instead of tethering the ping pong ball to the base of the beaker, it was instead submerged by my finger? I posed this question in the last video, and you responded with thousands of comments.

Thirteen percent of you thought that the acrylic ball beaker would be heavier. Twenty-nine percent thought the ping pong ball beaker would be heavier. And 54 percent of you thought that they would be balanced. So now let’s see what actually happens in three, two, one. Perfectly balanced.

But why is this the case? Well, just as in the previous experiment, both balls displaced the same amount of water and so they experienced the same upward buoyant force equal to the weight of water they displace. Therefore, there are equal and opposite downward forces on the water, making both beakers heavier by this amount.

And our answer could stop here. But if you are wondering why this result is different from the previous case, consider that in the first part, the downward force on the ping pong ball side was counteracted by the upward tension in the string. But not anymore, because there is no string.

Instead, the downward force from my hand is equal to the buoyant force minus the weight of the ping pong ball. So that overall both beakers get heavier by the same amount. It is just the weight of water displaced by the ping pong ball or the acrylic ball because it has the same volume.

I hope you enjoyed this experiment. If you have got another way of explaining this, please let me know in the comments.

More Articles

View All
The Secret City inside of London Revealed
The Great City of London, known for its historical landmarks, modern skyscrapers, ancient markets, and famous bridges. It’s arguably the financial capital of the world and home to over eleven thousand people. Wait, what? Eleven… thousand? That’s right: bu…
Metallic bonds | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
Now the last type of bond I’m going to talk about is known as the metallic bond, which I think I know a little bit about because I was the lead singer of a metallic bond in high school. I’ll talk about that in future videos, but let’s just take one of our…
Example: Analyzing distribution of sum of two normally distributed random variables | Khan Academy
Shinji commutes to work, and he worries about running out of fuel. The amount of fuel he uses follows a normal distribution for each part of his commute, but the amount of fuel he uses on the way home varies more. The amounts of fuel he uses for each part…
You Don't Type Alone.
Hey, Vsauce. Michael here. And thank you for clicking on this video. But how many times a day do you click? And how many times a day do you type keys on a keyboard? You might be surprised by the answer. And one of the best ways to know exactly how many ac…
This Journal Keeps Me Productive (& Maybe You Too)
This is the theme system journal. It’s something I helped design for me and maybe for you to help improve my life in a practical way. It’s a very flexible tool; there are intentionally almost no labels of what has to go where, so it can be adaptable. But …
Great White Shark Photo Shoot: Don't Try This At Home | National Geographic
Look at him right here! God, he’s big. Whoa, look at the size of that animal coming right at us! I am in Cape Cod, Massachusetts, which over the last few years has become sort of great white shark central. Man, look at all the seals! That explains everyth…