yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Extended: Beaker Ball Balance Problem


2m read
·Nov 10, 2024

This is the final installment of the beaker ball balance problem. So if you haven’t seen the first part, you should probably watch that now. The link is in the description.

Now assuming you have seen it, you know that the balance tips towards the hanging acrylic ball when weighed against a beaker with a submerged ping pong ball. But what would happen if, instead of tethering the ping pong ball to the base of the beaker, it was instead submerged by my finger? I posed this question in the last video, and you responded with thousands of comments.

Thirteen percent of you thought that the acrylic ball beaker would be heavier. Twenty-nine percent thought the ping pong ball beaker would be heavier. And 54 percent of you thought that they would be balanced. So now let’s see what actually happens in three, two, one. Perfectly balanced.

But why is this the case? Well, just as in the previous experiment, both balls displaced the same amount of water and so they experienced the same upward buoyant force equal to the weight of water they displace. Therefore, there are equal and opposite downward forces on the water, making both beakers heavier by this amount.

And our answer could stop here. But if you are wondering why this result is different from the previous case, consider that in the first part, the downward force on the ping pong ball side was counteracted by the upward tension in the string. But not anymore, because there is no string.

Instead, the downward force from my hand is equal to the buoyant force minus the weight of the ping pong ball. So that overall both beakers get heavier by the same amount. It is just the weight of water displaced by the ping pong ball or the acrylic ball because it has the same volume.

I hope you enjoyed this experiment. If you have got another way of explaining this, please let me know in the comments.

More Articles

View All
MMOs in the Instagram Era: Highrise (S18) - YC Gaming Tech Talks 2020
Um, hi everybody! I’m Jimmy, I’m the co-founder and CTO of Pocket Worlds. We’re High-Rise, and we built High-Rise, the app which is available on iOS and Android. I think to date, it has over 5 million downloads, and we’re grossing over a million a month i…
Visually dividing a whole number by a decimal
In this video, we’re going to see if we can compute what 3 divided by 0.75 is equal to. And I’ll give you a little bit of a hint before I tell you to pause the video. So let’s imagine three holes right over here. What if we were to think of these three w…
Rockets 101 | National Geographic
[Narrator] The ground begins to tremble. [Announcer] Three. [Narrator] Massive engines roar to life. [Announcer] Two. [Narrator] Billowing clouds of exhaust. [Announcer] One. [Narrator] And then a blinding pillar of fire. [Announcer] Liftoff…
Inca Empire overview | World History | Khan Academy
What we’re going to do in this video is think about the significant empires that formed shortly before the European colonization of the Americas. In particular, we’re going to focus on the Inca Empire. In other videos, we have talked about the Aztecs, but…
Developing themes | Reading | Khan Academy
Hello readers! Let’s talk about themes and how authors can intentionally build messages into fiction. Now, to recap a little, themes link big ideas about the world we live in with the action of a text. For example, in The Lord of the Rings stories and fil…
Radians as ratio of arc length to radius | Circles | High school geometry | Khan Academy
What we’re going to do in this video is think about a way to measure angles. There’s several ways to do this. You might have seen this leveraging things like degrees in other videos, but now we’re going to introduce a new concept, or maybe you know this c…